CITY OF COURtenay
COUNCIL MEETING AGENDA

DATE: Monday, March 18, 2013
PLACE: City Hall Council Chambers
TIME: 4:00 p.m.

1.00 ADOPTION OF MINUTES

1. Adopt March 11, 2013 Council meeting minutes

2.00 INTRODUCTION OF LATE ITEMS

3.00 DELEGATIONS

1. Roger Kishi & Kevin Albers, Wachiay Friendship Centre re: Supportive Housing

3. Cynthia Fitton, RN, LUSH Valley Food, re: Formation of a Roundtable

2. Gwendolyn Reischman, Pattison Sign Group re: Target Signage (see pg#23)

4.00 COMMITTEE/STAFF REPORTS

(a) Community Services

7 1. Community Mural Partnership Program

(b) Development Services

11 2. Development Permit Fees within the DCBIA

23 3. Development Variance Permit No. 1301 – 2801 Cliffe Avenue

33 4. Tsolum River Restoration Society Committee

(c) Operational Services

37 5. Sidewalk Inspection and Maintenance Policy

55 6. District Energy System

119 7. Integrated Flood Management Study

(d) Financial Services

121 8. DCBIA 2013 Proposed Budget and Tax Levy

5.00 REPORTS AND CORRESPONDENCE FOR INFORMATION
6.00 REPORTS FROM COUNCIL REPRESENTATIVES

7.00 RESOLUTIONS OF COUNCIL

1. In Camera Meeting

That under the provisions of Section 90(1)(c)(f)(g) of the Community Charter, notice is hereby given that a Special In-Camera meeting closed to the public, will be held March 18, 2013 at the conclusion of the Regular Council Meeting.

8.00 UNFINISHED BUSINESS

9.00 NOTICE OF MOTION

10.00 NEW BUSINESS

11.00 BYLAWS

11.00 BYLAWS

1. For First, Second and Third Reading

“Fees and Charges Amendment Bylaw No. 2747, 2013”
(to consider a $100.00 Development Permit Fee for properties within the DCBIA)

12.00 COUNCIL MEMBER ROUND TABLE

13.00 ADJOURNMENT
February 22, 2013

Mayor & Council
City of Courtenay
830 Cliffe Avenue
Courtenay, BC
V9N 2J7

Dear Mayor & Council:

This letter is in regards to our letter dated January 28, 2013.

We are requesting to present as a delegation to Council on March 18, 2013 on the issue of our offer of planning, developing and managing housing in the Comox Valley.

Myself and Kevin Albers- M’akola Housing CEO would be appearing before Council.

We look forward to the opportunity to brief Council, a confirmation would be appreciated.

In friendship,

[Signature]

Roger Kishi
Program Director

Cc: Kevin Albers
January 28, 2013

CVRD Board
Email: administration@comoxvalleymrda.ca

Mayor & Council
City of Courtenay
Email: jward@courtenay.ca

Dear CVRD Directors & Courtenay Council:

Re: Shelter/ Supportive Housing Property

Wachiay Friendship Centre writes to express its’ interest in meeting to discuss opportunities to move forward on addressing the issues of homelessness/ affordable housing in the Comox Valley.

Attached are letters sent to CVRD last year regarding our intent and partnership with M’akola Group of Societies.

In friendship,

R. Kishi
Program Director

Attachments: 2
February 22, 2012

Debra Oakman via email
Chief Administrative Officer
Comox Valley Regional District
600 Comox Road
Courtenay, BC V9N 3P6

Dear Ms. Oakman:

Re: Shelter/ Supportive Housing Property

The Wachiay Friendship Centre Society and the M'akola Group of Societies are partnering with the intent of planning, developing and managing housing in the Comox Valley. We believe that bringing together Wachiay’s experience in delivering homeless outreach services and M’akola’s proven record of planning, development and management of housing can benefit the Comox Valley.

We would be interested in meeting to discuss opportunities to work with the CVRD for the provision of housing on the Cliffs Avenue, Courtenay site.

We look forward to your response, and to discussing ideas with the CVRD in the near future.

Sincerely,

Cora Beddows Kevin A. Albers, CGA
President Chief Executive Officer
Wachiay Friendship Centre Society M’akola Group of Societies
March 20, 2012

Wachiay Friendship Society Centre/Makola Group of Societies
1625B McPhee Avenue
Courtenay, BC V9N 5N4

Attention: Cora Beddows, president; Kevin Albers, CEO

Dear Cora and Kevin:

Re: Shelter/Supportive Housing – Offer of Services

Thank you for your letter dated February 22, 2012 expressing your groups’ desire to work with the Comox Valley Regional District (CVRD) on supportive housing. At this time, the CVRD is awaiting the outcome of a City of Courtenay request for expressions of interest process before considering further action related to the Cliffe Avenue properties.

Sincerely,

[Signature]

James Warren
Corporate Legislative Officer
Dear Courtenay City Council,

March 1, 2013

I am writing to you on behalf of a collective of food organizations and private businesses that are supporting the formation of a roundtable on Comox Valley’s local food system. We are committed to creating a roundtable to work collectively towards a strong and sustainable local food system in Comox Valley.

This roundtable will employ a collective decision-making process and use comprehensive methods in identifying, assessing, and implementing food initiatives. A holistic perspective will be employed covering short-term relief, participation/transition, and system redesign.

Issues that identify the need for a roundtable on the local food system include:

- Competition and overlap of services.
- Increasing demand on short-term relief services.
- Barriers for growth in the local food economy.
- Population health concerns with chronic disease management and prevention.
- Pollution to our local and global environment.

A roundtable will provide opportunity for collective impact on the local food system, we could together envision a secure and sustainable local food system in Comox Valley bringing together the efforts of multi-stakeholders and provide a means to effectively restructure the local food system.

This is a list of organizations who are currently committed to supporting the formation of a roundtable on Comox Valley’s local food system:

<table>
<thead>
<tr>
<th>Comox Valley Family Services Association</th>
<th>Comox Valley Farmers Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comox Valley-Lazo Women’s Institute</td>
<td>Comox Valley Seed Savers and Growers</td>
</tr>
<tr>
<td>Comox Valley Transition Town</td>
<td>Comox Valley Farmers Institute</td>
</tr>
<tr>
<td>Lake Trails Neighborhood Connections</td>
<td>LUSH Valley Food Action Society</td>
</tr>
<tr>
<td>Merville Organics</td>
<td>Tree Island Gourmet Yogurt</td>
</tr>
<tr>
<td>Vancouver Island Health Authority</td>
<td>Innisfree Farm</td>
</tr>
</tbody>
</table>

Please consider your organizations participation. I am available for presentations and discussions to answer your questions. The first roundtable meeting will be: 12:30 pm – 2pm Friday March 22nd, at the Courtenay Library.

Kindest regards,

C. Fitton

Cynthia Fitton, RN, BScN, MA Community Development Student
Secretary for Board of Directors, LUSH Valley Food Action Society

1126 Piercy Ave, Courtenay, BC, V9N 3B6 250-331-0152 admin@lushvalley.org www.lushvalley.org
THE CORPORATION OF THE CITY OF COURtenay

REPORT TO COUNCIL

FILE #:

FROM: Director of Community Services DATE: March 13, 2013

SUBJECT: Community Mural Partnership Program

C.A.O. COMMENTS/RECOMMENDATIONS:

That the report from the Director of Community Services be accepted.

RECOMMENDATION:

That the report regarding the Community Mural Partnership Program be received for information.

PURPOSE:

To provide information on the mural partnership program

BACKGROUND:

The City has been working with community groups on various mural and art projects. There are solid partnerships in place with utility companies such as BC Hydro and most recently Telus for utility box beautification. The City also works in conjunction with the Downtown Business Association to keep the downtown free of graffiti and has seen merchants actively involved in beautifying their store fronts as part of the Elevate the Arts Festival in 2012.

The Comox Valley Arts Council has coordinated youth murals at the outdoor pool and under the 5th Street Bridge. The Arts Council has recently initiated an “Art on the Wall” program; in which youth ages 15-24 can be mentored and involved in participating in a community art or mural project.

DISCUSSION:

The Art on the Wall project will see 10 youth work under the guidance of a professional Curator and artist. The mural project will have the theme “Diversity” and will be exhibited on a prominent downtown wall at the Elks Lodge. The project has several partners including the Elks Lodge, Comox Valley Community Justice Centre and the Comox Valley Arts Council. Specific criteria and a juried selection process with representatives from each organization will be in place prior to any mural installation.

Three other murals will be done on small City park buildings throughout the summer. The City is also exploring opportunities to partner with private business on a joint mural. An example could be the development of a railway theme adjacent to the Rails with Trails project.
FINANCIAL IMPLICATIONS:

Funds have been allocated for the overall Community Mural Partnership Program within the Partners in Parks capital budget. These funds will support the Utility Box Initiative, City Facilities Mural Initiative, Art on the Wall youth mentorship initiative and the Business Partnership initiative.

In regards to the initial mural being done on Diversity, the City will contribute 2,000 towards a 9,000 total budget.

STRATEGIC PLAN REFERENCE:

3. An open and vibrant community
 - Promote community engagement
 - Encourage partnerships

4. An active community with cultural and recreational opportunities.
 - Be a regional centre for arts and culture.

OCP SUSTAINABILITY REFERENCE:

REGIONAL GROWTH STRATEGY REFERENCE:

Respectfully submitted,

Randy Wiwchar
Director of Community Services
Art on the Wall is a community initiative project that invites applications from youth ages 15-24 interested in art and community. In the project, 10 youth will work as a team, under the mentorship of Anh Le (Curator and visual artist) and selected experienced mural artists to create an initial mural based on the theme of 'Diversity'. The work created in the first phase of the project will be exhibited on a prominent downtown wall. We will work towards several design plans that will be presented to community partners for installation at up to three other locations through the summer.

Questions? Contact Dallas Stevenson at info@comoxvalleyarts.com

Participants receive:
- the opportunity to work on a collaborative and fun community project, and to hone their creative skills
- hands-on guidance from two or more experienced visual arts professionals
- gain understanding of community service and developing artistic voice
- gain work experience
- instill and/or reinforce community pride
- encourage dialogue and collaboration develop appreciation for the arts develop a sense of social engagement
- showcases community spirit
- provide opportunities for freedom of expression
- get involved in community development and gain a sense of empowerment
- snacks
- a $50 honorarium upon project completion

This project is presented by in partnership by Comox Valley Art Gallery, the Comox Valley Community Justice Centre, the Elks Lodge, the City of Courtenay and the Comox Valley Community Arts Council. We gratefully acknowledge funding support through the City of Courtenay, the Elks Lodge, BC Arts Council and Canadá-EmprețeB. The diversity mural is part of a larger community initiative hosted by the Comox Valley Community Justice Centre – ‘organizing against racism and hatred’.
THE CORPORATION OF THE CITY OF COURTENAY

REPORT TO COUNCIL

FROM: Development Services Department

FILE #: 3030-03
DATE: March 11, 2013

SUBJECT: Reduction of Development Permit Fees for properties within the Downtown Courtenay Business Improvement Area

C.A.O. COMMENTS/RECOMMENDATIONS:
That the recommendation of the Director of Development Services be accepted.

RECOMMENDATION:
That Bylaw No. 2747, 2013 to amend the Fees and Charges Bylaw No. 1673, 1992 by reducing the Development Permit Fees from $1,000 to $100 for the exterior renovation of properties within the Downtown Courtenay Business Improvement Area proceed to 1st, 2nd and 3rd reading.

PURPOSE:
To consider the reduction of Development Permit fees for the exterior renovation of properties within the Downtown Courtenay Business Improvement Area.

BACKGROUND:
The Downtown Courtenay Business Improvement Association is introducing a new façade improvement program. The program is administered by the DCBIA and awards grants to property or business owners for the renovation or redesign of commercial building façades with the goal of revitalizing and beautifying the downtown core. Grants are available for up to 50% of eligible improvement costs to a maximum of $5,000 and are funded through the DCBIA annual budget.

DISCUSSION:
The DCBIA area is within the Downtown Development Permit Area. The current application fee for improvements requiring a Development Permit is $1,000. This can account for a significant portion of the grant and can deter potential improvements. Staff are recommending a reduction in development permit fees from $1,000 to $100 for commercial properties within the DCBIA area to support efforts to revitalize the downtown. This reduction would only apply to the exterior renovation of existing properties. Building additions or new construction would still be required to pay fees under the existing fee structure based on the total floor space of the building.

Reducing the Development Permit fees translates into more money available for improvements which can assist in the strengthening and promotion of downtown. The DCBIA Facade Improvement Program Guidelines (Attachment No.2) are consistent with the Downtown Development Permit Area guidelines and provide a greater level of detailed design guidance.

Development Permit applications for exterior renovation projects within the downtown are often less complex with smaller storefronts and fewer landscaping, environmental and transportation concerns than typical commercial developments elsewhere in the city. As a result, they typically require less staff time to administer.
Given the intent of the program and the amount of staff resources involved in the review of the development permit application, staff feel it is appropriate to reduce the Development Permit Application Fees in support of the DCBIA Façade Improvement Program.

FINANCIAL IMPLICATIONS:
Staff do not anticipate any financial implications resulting from this change as the resources required to process these minor applications is expected to be minimal.

STRATEGIC PLAN REFERENCE:
Support community initiatives and distinct neighbourhoods:
d) Support Downtown Courtenay; and
Advocate high standards of design and community aesthetics.

OCP SUSTAINABILITY REFERENCE:
The renovation and continued use of existing buildings supports energy efficiency goals of the City.

REGIONAL GROWTH STRATEGY REFERENCE:
3A-3 Promote supportive development and business-permitting standards.

Respectfully submitted,

[Signature]
Erin Ferguson, MCP
Planning Technician

[Signature]
Peter Crawford, MCIP
Director of Development Services
FAÇADE IMPROVEMENT PROGRAM GUIDE

FOR BUILDING FAÇADES LOCATED WITHIN THE DOWNTOWN COURtenay BUSINESS IMPROVEMENT ASSOCIATION AREA IN COURtenay, BC.
HISTORY

This program is the result of a desire by the Downtown Courtenay Business Improvement Association to revitalize and beautify the downtown core.

PROGRAM PURPOSE AND GOAL

This program provides grants to property and business owners to renovate, restore, or redesign retail and commercial building façades and storefronts located in Downtown Courtenay BIA boundaries. The goal of this program is to encourage owners of such buildings to invest in building upgrades that create a more appealing and marketable environment on the street, attracting people and businesses to the area.

This initiative may contribute to:

- Making Downtown Courtenay a more inviting and interesting place to shop, walk, live, and play;
- Promoting the marketability of retail and commercial businesses;
- Helping building owners to attract and retain tenants;
- Contributing to the quality of life of residents, workers and visitors to Courtenay;
- Building civic pride among the business community and the citizens of Courtenay.

ELIGIBLE PROPERTIES

Existing buildings located within the Downtown Courtenay Business Improvement Association (DCBIA) area in Courtenay.

ELIGIBLE APPLICANTS

To be eligible to apply:

- You must be the property owner or the business owner. If the applicant is the business owner, the property owner must approve of the application in writing and confirm that all improvements are to be paid for by the applicant;
- All City of Courtenay property taxes pertaining to the property are fully paid and current;
- You must start your improvement project after the application is approved; and
- You have not received a previous grant under this program for the subject property.
GRANT AMOUNTS
This program can provide grants of up to 50% of the cost of eligible improvements, up to a maximum of $5,000 per building. Corner buildings with two street-facing façades could be eligible for up to $10,000 in grants. The minimum grant application must be for $1,000 per building. Taxes not included.

BUDGET
An annual budget is approved by the DCBIA.

ELIGIBLE FAÇADE IMPROVEMENTS
Projects are required to reflect principles of good design. For this purpose, applicants should review and address the criteria outlined in this Program Guide (see ‘General Guidelines’ and ‘Design Guidelines’). Building façade and storefront features eligible to be renovated, restored, or redesigned with grant dollars include:

- Exterior Architectural Details
- Exterior Decorative Details
- Exterior Lighting of Building and/or Signs
- Façade Cleaning and Painting
- Signage
- Patio Areas
- Design, Architectural, Engineering Fees
- Exterior Surfaces
- Windows and Window Openings
- Doors and Doorway Openings
- Moldings/Trim/Cornices
- Entranceways
- Awnings
- Landscaping Elements

GRANT APPLICATION, APPROVAL, AND REIMBURSEMENT PROCESS
All project proposals are subject to comprehensive review of the façade and storefront, must meet high quality standards, and must reflect the spirit and intent of the Façade Improvement Program Guidelines.

Generally, the application, approval, and reimbursement process is as follows:

1. Contact the DCBIA to determine if your building is in the DCBIA area and to get a Façade Improvement Program Guide and Application;
2. Contact the DCBIA to discuss your proposed project;
3. Submit a completed Application to the DCBIA;
4. Project Review Committee reviews the application.
5. Applicant will be advised in writing as to whether the application has been approved, refused or approved with conditions. All applications will be reviewed on a timely basis;
6. If approved, a pre-construction site inspection is conducted by the Project Review Committed
7. A Performance Agreement is entered into between the successful applicant and the DCBIA which will include a detailed description of the project and work to be completed including all relevant attachments included with the application (including drawings), total cost of the project, anticipated completion date of the project (must be within 12 months of the application being approved), and any conditions;
8. Project construction begins;
9. The applicant must provide the following to the DCBIA for reimbursement:
 a) A Certificate of Completion signed by the applicant and the contractor or architect indicating that the work described within the Performance Agreement has been fully completed and paid in full;
b) Copies of all bills pertaining to the project and proof of payment (copies of credit card receipts or cancelled cheques); and

c) Proof that the improvements have passed final inspection (where required) and meet all City of Courtenay requirements including zoning, building and safety codes (where required);

10. Project is inspected by the Project Review Committee to ensure completion of the terms of the Performance Agreement;

11. Applicant is issued a cheque according to the terms of the Performance Agreement.

* Development, Building, and Sign Permits are required where applicable. Proposed improvements must all comply with and include any required permits. It is best to check with City of Courtenay Development Services for full and accurate information; telephone 250-334-4441, email planning@courtenay.ca. See Development Permit Guidelines relating to form and character of buildings and including building details and design, entrances, signage and lighting here: http://www.courtenay.ca/planning/official-community-plan.aspx. See sign permit information and applications here: http://www.courtenay.ca/planning/sign-permits.aspx.

A Development Permit is required for exterior renovations unless you are only replacing the windows but not changing the openings, only painting the exterior, or if the change in the exterior design of any building on any one side is less than 25% in area as determined by the City.

* Submitting an Application does not guarantee a grant or a specific grant amount.
GENERAL GUIDELINES

INTRODUCTION

The Façade Improvement Program is primarily concerned with the physical appearance of the buildings within the DCBIA area and their relationship to the street. Façades and storefronts of retail and commercial buildings need to be considered as part of an integrated street scene. The character and design of the building along with the businesses contained within attract shoppers both for the goods and services they provide and for the experience of walking around an interesting and lively urban space.

Much can be achieved by thinking about what constitutes good building design when carrying out an exterior renovation project. A few general design principles pursued through this program include:

• Creating façades and storefronts that add interest, activity and comfort to the street environment; and
• Strengthening the architectural integrity and design unity of individual façades; and
• Emphasizing compatibility in design, materials and colours to make adjacent buildings read as a unit.

PURPOSE

The Guidelines form the starting point of any application filed under this program.

The challenge under this program is to improve the character and physical appearance of buildings while allowing building owners and business owners to assert their identity and economic viability.

To this end the Guidelines are intended to:

• Set quality standards for the types of improvements that will improve the buildings;
• Coordinate individual projects with surrounding buildings and other projects to create a positive, welcoming image and a quality pedestrian environment;
• Serve as the basis for discussion with the DCBIA in the development of the application; and
• Act as a guide to the review of the application by the Project Review Committee.
DESIGN GUIDELINES

1. OVERALL BUILDING ARCHITECTURE CONNECTION BETWEEN THE STREET AND THE BUILDING

The starting point in creating a unified block face and in organizing the diversity of architectural styles and details on a given street and on a given building is an understanding of the building façade’s framework.

The framework is made up of two major elements – the street level storefront and the upper façade.

The **Street Level Storefront** is defined by the upper façade’s piers and the sign frieze or fascia that separates the storefront’s display windows from the upper architecture. This lower portion of the façade provides visual and physical access to the business located within and is the area in which the individuality and identity of that business can best be expressed. The main purpose of the storefront is to display goods and to project the image of the business therein. Storefronts also permit window shopping and can contribute to the shopping experience on key street oriented retail streets. Collectively, storefronts combine to project the image of the street and, in the case of key streets, the downtown and region self.

The **Upper Façade** is that part of the building extending to the roof line. The Upper Façade consists of the cornice and the fascia that cap the building front, the building’s upper storeys, the windows that give articulation and interest to the upper architecture, and the piers that extend to ground level and visually support the façade and frame the storefront.

Within this framework there are a range of architectural components within which various design elements may be incorporated which add interest, complexity, and diversity to the building façade.

- Windows
- Cleaning
- Awnings
- Colours
- Access & Flooring Covering
- Repairs
- Scale
- Doorways
- Signs
- Roofline/Upper Façade

Storefront architectural features: fascia, cornices and pilasters (or piers)

The design of these various architectural components may be repeated or absent on surrounding buildings. Coordinating façade improvements with neighbouring structures helps to complement the design of the storefront, creating diversity and interest at street level, and unity in building lines.

At a minimum, buildings require general cleaning, repairs, and improved elements of the façade to profile the positive design features.
2. GROUND COVERING MATERIAL

Minimum grade separation between the sidewalk and the built frontage should be provided. Any ground covering materials used in private forecourt space should be durable, non-slippery, and easy to walk on by all users including women with high heels or disabled people with various devices. The finishes of the forecourt (private ground level entry area underfoot) can employ creative materials, color, texture and overall design pattern that complement treatments to the public walk.

3. CRIME PREVENTION THROUGH ENVIRONMENTAL DESIGN

The principles of Crime Prevention through Environmental Design (CPTED) should, where possible, be incorporated into the design/renovation of the buildings.

4. LIGHTING ON THE BUILDING

The building entrances and façades should be lit to provide for pedestrian safety and security as well as to accentuate the building architectural features. Pedestrians scale lighting can also be incorporated into the building façade. Previously existing fixtures and electrical equipment should be removed. **Lighting must meet with City of Courtenay ‘dark skies’ policy.**

5. SIGNAGE

Ground floor business will have individual business identification signs. Signs should comply with City of Courtenay bylaws.

6. QUALITY FINISHED INTEGRATED DESIGN & CORNER TREATMENT

The renovated façade of the building should be well integrated, interesting, and architecturally in unison with the style for the whole building. The corners of the building facing two streets should address both streets and should be well detailed for any pedestrian activity. Important building corners should avoid placement of staircases or other non-active functions like storage, mechanical or electrical rooms as those make the corner a dead space.
FAÇADE GRANT CRITERIA

1. Applicant must be a registered owner of a property within the DCBIA Area or a business owner within the DCBIA Area. If the applicant is a business owner, the property owner must approve of the application in writing and confirm that all improvements are to be paid for by the applicant. Grant reimbursement is made to the applicant.
2. All applicants must provide a recent (no more than 30 days old) copy of the title to the property.
3. Where required, suitable drawings and building material specifications must accompany the application.
4. Signage and awnings must comply with City of Courtenay bylaws.
5. All applicable permits must be applied for through the City of Courtenay, and be included in the costs of the project.
6. Exterior façade improvements/upgrades only.
7. Maximum amount of the grant to be 50% of approved project costs, to a grant maximum of $5,000 ($10,000 if a corner). Minimum grant application is $1,000. Not including taxes.
8. The number of grant approvals and grant amounts will depend upon the budget set for the year by the committee, and the number of applications received and approved.
9. Façade components include:
 a) Doors and Doorways
 b) Windows and Window Openings
 c) Awnings
 d) Signage
 e) Lighting
 f) Exterior Surfaces
 g) Structural Changes
 h) False Fronts
 i) Moldings/Trim/Cornices
 j) Architectural Details
 k) Patio areas
 l) Landscaping Elements
 m) Paint
 n) Decorative Details
 o) Entranceways
9. The completed project must match the approved project to ensure funding.
10. The grant is paid upon completion and inspection of the project.
11. Grants are available one time only for each property.
THE CORPORATION OF THE CITY OF COURtenay

REPORT TO COUNCIL

FILE #: 3090-20-1301

FROM: Development Services Department

DATE: March 12, 2013

SUBJECT: Development Variance Permit (sign bylaw)
2801 Cliffe Ave.

C.A.O. COMMENTS/RECOMMENDATIONS:
That the recommendation of the Director of Development Services be accepted.

Sandy C. Gray

RECOMMENDATION:
That Development Variance Permit No. 1301 to vary Section 6.4.1 and Section 6.4.4 of the City of Courtenay Sign Bylaw No. 2042, 1998 to increase the maximum total area for fascia signs per building face of a business premise from 9.0 m² to 29.39 m² and to increase the maximum height of a fascia sign from 1.0 metres to 3.66 metres for the property legally described as Lot A, Section 66 & 67, Comox District, Plan 44811, Except Parts in Plans 49234, VIP66865 and VIP68598 (2801 Cliffe Avenue) be issued subject to conformance with the plans and drawings contained in Attachment No. 3.

PURPOSE:
To consider relaxation of the City of Courtenay Sign Bylaw provisions related to the maximum height and total area of fascia signs on a building.

BACKGROUND:
Target is currently renovating and expanding the floor area of the old Zellers lease space at the south end of the Driftwood mall. The renovations are nearing completion and the proponent is at the stage of installing new corporate signage. The proposed signage exceeds current sign bylaw limits.

DISCUSSION:
Council issued a form and character development permit (DP) for the exterior renovation and addition in July 2012. At that time the applicant decided not to include the sign variance in the DP as it was important to get the building construction underway and the statutory notification requirements for development variance permits would have delayed the process by a few weeks. The proposed signage, however, is consistent with the drawing included in the DP and conforms to the condition that they not be internally illuminated. All signs are reversed channel letters (halo lighting) and comply with the Shopping Centre Development Permit Guidelines.

The applicant is requesting the following variances to the City of Courtenay Sign Bylaw:

Section 6.4.1 - To increase the maximum total sign area for the fascia signs from 9.0 m² to 29.39 m²; and
Section 6.4.4 - To increase the maximum height for fascia signs from 1.0 m to 3.66 m (12 feet) for the Cliffe Avenue Target bullseye, and 3.05 m (10 feet) for the 29th Street Target bullseye.

Attachment No.3 provides details of the height, area and location of each of the proposed signs. Also included is a rendering of the front elevation of the mall showing the Target signage in comparison to the previous Zellers signs and the remainder of the mall.

While the applicant is requesting a variance to the maximum signage height, this request only applies to the bullseye logos. The “Pharmacy” and “Target” lettering both comply with the 1.0m height limit. The total area of all of the fascia signs is substantially greater than the 9 m² permitted by the Sign Bylaw but is much less than 20% of the building face. Staff recognize that variances to allow larger signage on large format retail stores are often necessary to keep signage in proportion with the building. Appropriate signage for large format retail buildings is one aspect being considered in the ongoing review of the Sign Bylaw.

When comparing the proposed rendering with the previously existing Zellers signs staff are of the opinion the new signs are of similar size to the older ones and are of an appropriate scale for the building frontage. Accordingly, staff supports the requested variances. Should Council feel the variances are excessive, staff recommend consideration be given to approving a 10 foot diameter bullseye for the main entrance sign to maintain consistency with Target’s standard sign dimensions.

Public Input

Pursuant to the requirements of the Local Government Act, surrounding property owners and tenants were notified of this development variance permit application prior to Council’s consideration. To date, one letter of objection has been received which is attached for information.

FINANCIAL IMPLICATIONS:
N/A

STRATEGIC PLAN REFERENCE:
N/A

OCP SUSTAINABILITY REFERENCE:
N/A

REGIONAL GROWTH STRATEGY REFERENCE:
N/A

Respectfully submitted,

[Signatures]

Ilan Buki, MCIP, RPP
Manager of Planning

Peter Crawford, MCIP, RPP
Director of Development Services
Attachment No. 1

Applicant: Priority Permits.
Location: 2801 Cliffe Avenue (Target)
Legal Description: Lot A, Section 66 & 67, Comox District, Plan 44811, Except Parts in Plans 49234, VIP66865 and VIP68598

Sign Bylaw (Fascia Signs)
Permitted Proposed

Area: Maximum of 9.0 m² 29.39 m²
Height: 1.0 metres Total height for the target bullseye is 3.66m (12 ft) for the main sign and 3.05m (10 ft) for the bullseye on the side elevation.

Adjacent Land
Uses:
- Commercial and Industrial.
Jan. 22, 13

City of Courtenay
Planning Services
830 Cliffe Ave.
Courtenay, BC
V9N 2J7

Attn: Variance Department

Re: Target (2801 Cliffe Ave.)

The proposals are for two Target “bullseye” logos on the East and South elevations. The intention is to provide advertising to this new Target location and provide ample visibility to pedestrians and to motorists on Cliffe Ave. and 29th St.

The Target signs are of a standard size that is to be branded across all of Canada at all new locations. For ease of manufacturability, the size is set at a 12 foot and a 10 foot diameter.

The bylaw in Courtenay currently outlaws these signs due to their excessive area and vertical height. The height restriction seems to be intended more for signs involving text and not for logos of a circular nature. The logo is an important part of Target’s advertising as it has a unique design which separates it from other major retail corporations. The area is over-sized but does not involve scrawls of text that would detract with wordiness or confusing catch-phrases.

Furthermore, the signs would be warranted based on physical circumstances applicable to the property. The design would be in keeping with the current architectural feel of the site and other features. The new signs would not negatively affect any other nearby properties nor add to signage over-proliferation as there is a large empty lot in front of this building. Public safety would not be jeopardized as the signs are high enough up to not infringe on vehicle traffic or pedestrian thoroughfares.

For these reasons and more, we ask that the City of Courtenay allow for this sign to be placed as noted.

Shaun Cranney
Priority Permits Ltd.
Ph: 778-397-1394
Fax: 1-888-738-3846
Email: prioritypermits@shaw.ca
Planning Service Department
March 11th, 2013
Mr. Ian Buck
830 Cliffe Avenue
Courtenay, BC
V9N 2J7

March 11th, 2013

Re: Application for development Variance Permit no. 1301
Lot A, Section 66 & 67, Comox District, Plan 44811, Except Parts in Plans 49234,
VIP 66865 and VIP 68598

File Number 3090-20-1301

Dear Ladies and Gentlemen,

in regards to your letter, dated March 5, 2013, I would like to inform you that we are opposed for granting the Variance Permit to Target to install a larger Sign, because it is unfair to other businesses in the surrounding Area and Valley. We would like to point out that our current renters had to obey by the present bylaws.

Sincerely,

Laurie J. Mathers

W.L.R. Holdings
4165 Arnett Road
Courtenay, BC
V9N9N3
THE CORPORATION OF THE CITY OF COURtenay

REPORT TO COUNCIL

FILE #: 0400-20

FROM: Director of Development Services

DATE: March 13, 2013

SUBJECT: Tsolum River Restoration Society committee participation request

C.A.O. COMMENTS/RECOMMENDATIONS:

That the recommendation of the Director of Development Services be accepted.

RECOMMENDATION:

That Council appoint a staff member from the Development Services Department to sit on the Tsolum River Partnership committee.

PURPOSE:

To inform Council of staff’s recommended involvement in the Tsolum River Partnership committee.

BACKGROUND:

The Tsolum River Restoration Society (TRRS), represented by Jack Minard and Wayne White, made a presentation to Council in September 2012 in which they updated Council on work and accomplishments of the Society and requested that City involvement. Council moved:

"that staff report back to Council whether the Tsolum River Restoration Society Board should be represented by staff; a Council member or both, and further that the report include what costs would be involved and the time commitment."

DISCUSSION:

The TRRS

The mission of the TRRS is: “To restore and maintain all ecological features of the Tsolum River watershed by acting to preserve the beauty, integrity and stability of the river and its biotic community.”

The TRRS was formed in 1998, and traces its conception to a forum – and later report - on watersheds and water related issues in the Comox Valley entitled “Water Lifestream of the Comox Valley”, in the early 90s. The Society originated to address Acid Mine Drainage (AMD) from the Mount Washington Copper Mine, which in 1999 was named BC’s most threatened river as a result of over 30 years of leaching from the mine.
The Tsolum River Partnership is the group of stakeholders responsible for organizing and implementing the program that resulted in the successful reclamation efforts of Acid Mine Drainage (AMD). In 2012 the Partnership won the top provincial award for mine restoration - the Jake McDonald Award - and in 2013 the mine was declared as no longer polluting the Tsolum River.

Now that the Partnership has achieved its remediation goals, it is shifting its efforts towards recovery and water quantity-based planning and initiatives. A focus on water quantity has emerged as a priority to the group due to the extreme nature of the flows: high flows in winter cause flooding, river bed scouring (thereby shifting spawning gravels and killing spawned salmon eggs), and river bank erosion. Low flows in summer can result in loss of rearing habitat for young fish (before they migrate to the ocean) and reduction in water availability for agriculture.

City involvement and benefits
The Tsolum River has been a source of major flooding within the City’s boundaries in the past few years. Initiatives that affect the quantity of water within the Tsolum River therefore have implications to the City in terms of emergency service, land use planning and possible mitigative infrastructure (e.g. dikes) perspectives. Given the nature of the challenge of flooding within our floodplain (more to be discussed in the forthcoming Integrated Floodplain Management Study), a partnership approach is required to moderate flows within the Tsolum watershed.

In addition, the City is currently involved in a multi-stakeholder regional initiative on watershed planning called CAVI (Convening for Action on Vancouver Island – Comox Valley chapter). Acknowledging that “nature knows no boarders” the goal of CAVI is to adopt consistent and collaborative approaches to watershed based planning, including development application procedures and regulations. The Tsolum River Restoration Society’s focus on watershed scale planning efforts to address extremes in water quantity parallels the CAVI team’s work in other, more urban, watersheds.

Staff support the Environmental Planner’s involvement on the TRRS committee, in an effort to further align efforts and adopt consistent management practices in all our watersheds, including flood mitigation specifically within the Tsolum River. Political representatives are welcome, and encouraged by TRRS, to attend any of the TRRS meetings, but staff do not recommend that a political representative be assigned to the committee at this time.

Staff’s involvement in individual meetings will be determined based on agenda-specific items (e.g. approaches addressing lands within the City’s jurisdiction).

Council communication
For the past two years staff have provided Council with an annual ‘State of the Environment’ report. Reporting out from environment-related committees can be incorporated into the State of the Environment report to keep Council abreast of committee activities. Additional reports to Council may be prepared as needed.

FINANCIAL IMPLICATIONS:

No financial implications. Time commitments include between 4 to 6 meetings a year, for 2 hours apiece. The City will not be involved in any administrative duties of the Society.

STRATEGIC PLAN REFERENCE:

Vision Statement 1: A safe and caring community
Goal 2: Demonstrate leadership in environmental management
Objectives b) and c): Promote efforts to preserve and protect the estuary; and Complete flooding abatement studies and plan work
Vision Statement 3: An open, inclusive and vibrant community
Goal 3: Encourage regional partnerships

OCP SUSTAINABILITY REFERENCE:

The OCP chapter on the environment states a number of goals including: "To protect and enhance fish and wildlife habitats" and "to work with watershed and stream stewardship groups on environmental related matters."

REGIONAL GROWTH STRATEGY REFERENCE:

Policy 2B-2: Explore and encourage the practice of restoration of urban and rural ecosystems to increase ecological functions.

Respectfully submitted,

Nancy Hofer, BSc, MSW
Environment Planner

Peter Crawford, RPP, MCIP
Director of Development Services
THE CORPORATION OF THE CITY OF COURtenAY

REPORT TO COUNCIL

FILE #: 5420-01

FROM: Kevin Lagan P. Eng.
 Director of Operational Services

DATE: March 11, 2013

SUBJECT: Sidewalk Inspection and Maintenance Policy

C.A.O. COMMENTS/RECOMMENDATIONS:

That the recommendation of the Director of Operational Services be accepted.

RECOMMENDATION:

That Sidewalk Inspection and Maintenance Policy # 5420.00.01 be approved, replacing Trip Hazards on Sidewalks Policy #5420.00.01R-2.

PURPOSE:

To replace the existing Trip Hazards on Sidewalks Policy with a new Sidewalk Inspection and Maintenance Policy attached to this report.

BACKGROUND:

The City adopted the existing trip hazard on sidewalk policy on September 13, 2004. This was the first policy of this type and allowed the City a means of evaluating and attending to maintenance on sidewalk on a priority basis. It also provided a policy on which to base the regularity of inspections and the work to be performed to correct any deficiencies found.

On January 15, 2013 the Municipal Insurance Association provided the City with a Sidewalk Project document that they had developed. This project reviewed the City's claims history data and proposed a policy that would improve the inspection and maintenance service. A copy of the document is attached for information.

DISCUSSION:

The existing policy provided the City with a good basis on which to address the risks to the City relating to trip and fall claims. The new policy will move the inspection and maintenance standards to an improved level of sidewalk safety and also assist in reducing the financial risk to the City.

FINANCIAL IMPLICATIONS:

Inspection costs already part of the Operations Budget, and reduce the financial risk to the City.

STRATEGIC PLAN REFERENCE:

No specific reference.
OCP SUSTAINABILITY REFERENCE:
No specific reference.

REGIONAL GROWTH STRATEGY REFERENCE:
No specific reference.

Respectfully submitted,

[Signature]

Kevin Lagan, P. Eng.
Director of Operational Services.
February 21, 2013

Via Regular Mail

The City of Courtenay
830 Cliffe Avenue,
Courtenay, BC V9N 2J7

Attention: Ms. Tillie Manthey, Director of Financial Services & Deputy CAO

Re: Municipal Insurance Association of British Columbia’s Sidewalk Project

The MIABC is committed to helping members reduce their claims and maximize opportunities for the provision of local government services. We have recently surveyed our claims history of all members and found that the most frequent claims relate to loss of balance. In an effort to assist our membership identify and minimize this risk, we are pleased to introduce the MIABC Sidewalk Project.

The goal of this project is to take a closer look at each member’s specific policies and procedures and compare them with an analysis of their loss of balance claims history. With the help of our new Data Analyst, Danica Zhou, we have been able to analyze claims data relating to the City of Courtenay since its membership with the MIABC began in 1988. This information has helped us generate some useful strategies that may reduce the number of loss of balance claims you have in the future, increase your ability to provide services to your community, and best of all, save you money.

This first attachment (Schedule “A”) is a graph depicting the costs associated with managing the City’s sidewalk claims. When compared to other MIABC members of similar population, the City’s claims costs are relatively low. Schedule “B” is a graph which illustrates the rate at which the MIABC is able to successfully close the City’s claims (i.e. no indemnity payment is made). While the City ought to be congratulated for this success rate, over one third of all loss of balance claims still result in an indemnity payment. Hopefully, this project will help the City take steps to reduce the amount it has to pay (by way of deductibles) in relation to the defence of these types of claims.

To better understand the reasoning behind whether an indemnity payment is made to a claimant, we should briefly explain the process by which the MIABC handles claims. When a new claim is received, an investigation is conducted. If that investigation reveals that a policy was in place and followed at the time of the accident, a decision is made to defend the claim on behalf of the member. If, however, our investigation reveals a
problem with a policy or a breakdown in procedure, then a determination must be made as to whether the standard of care has been met in that instance. If it has not, the claim is most likely resolved by way of a payment to the claimant on behalf of the member.

Schedule “C” is a graph depicting the City’s claims frequency from 1988 to 2011. What it tells us is that following the City’s adoption of an inspection policy in 1995, the frequency of claims became much more consistent. Another trend is illustrated in Schedule “D” which shows that following the policy change, the severity of claims was lower. While severity is not a predictable factor, it is interesting that claims severity has reduced almost 50%. The other measure we found when comparing frequency of claims is that the City ranks quite high when compared to other local governments of the same size and geographical location.

It is our understanding that the City’s current policy requires all sidewalks to be inspected at least once per year. Level 1 trip hazards are anything less than ½ inch (12mm). Level 2 trip hazards are less than 1 inch (25mm) and Level 3 trip hazards measure over 1 inch (25mm). The policy requires that all Level 3 hazards be temporarily patched and serviced on a priority basis taking into consideration the severity of the hazard and the level of pedestrian traffic in the area. Level 1 and 2 hazards are only serviced once Level 3 hazards have been temporarily repaired. All permanent repairs are then carried out in accordance with the City’s annual budget.

A policy is the best defence a local government has to any claim. The courts will not find a local government liable for damage resulting from a trip and fall if it can be demonstrated that a policy was in place and being followed at the time of the accident. In order to be afforded this defence, however, a policy must meet several criteria. Clear language and precise, specific direction are key characteristics of a strong policy.

We have analyzed the City’s policy and have several recommendations that would greatly improve it and thus make it a more effective defence to claims. Improving one’s policy also enhances the level of service provided to members of your community and more clearly states your objectives in terms of the level of service you intend to provide.

There are several areas where this policy could be improved. First, if it is the practice of staff to conduct an annual inspection, the policy should simply state that inspections will be conducted annually. Having the phrase “at least once per year” leaves open to question whether the inspections that were conducted were frequent enough and also allows for discretion as to whether inspections should occur more or less frequently. This type of discretion and vagueness can often weaken a policy in the eyes of the Court.

With respect to Level 3 hazards, we recommend that all policies should require that they be marked immediately upon inspection so the public is aware of them during the time it takes to arrange for repairs. Further, we recommend that a time frame be set out in which all repairs will occur. Leaving the time frame open again allows for staff to exercise a level of discretion that often makes the decision not so much one of “policy” but rather
“operation”. Operational decisions are not viewed by the courts in the same manner as policy decisions and are often subject to review as to whether they were reasonable under the circumstances.

Defects usually get worse before they get better. It is for that reason that we recommend your policy have in it a requirement that all Level 2 hazards be reviewed at specific intervals following their initial detection. That way, should a Level 2 become a Level 3, you are able to identify it, mark it and slate it for repair within the time frame stipulated.

Many local governments adopt the following criteria which provide for a strong program of inspection and maintenance:

<table>
<thead>
<tr>
<th>CATEGORY:</th>
<th>DESCRIPTION:</th>
<th>WHAT TO DO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>A differential of less than 1.25cm (1/2 inch).</td>
<td>No service required.</td>
</tr>
<tr>
<td>Level 2</td>
<td>A differential between 1.25cm (1/2 inch) and 2.5cm (1 inch).</td>
<td>List for reinspection in 6 months’ time.</td>
</tr>
<tr>
<td>Level 3</td>
<td>A differential greater than 1 inch (2.5 cm).</td>
<td>Repair within one week and marked immediately.</td>
</tr>
</tbody>
</table>

The MIABC is always looking for new ways to help improve our members’ ability to provide their services. Schedule “D” is a draft policy template which may be useful to you. It does not significantly alter your current policy other than to apply some additional criteria which we believe are essential to a successful policy defence.

Schedule “E” is a corresponding template inspection report form which has been crafted to ensure that all the information necessary to document the implementation of this policy is collected. The record of each item contained in the form is, from the perspective of the MIABC, critical to a successful policy as well as defence. Because we are aware that the decision of how and when to repair is often made by someone other than the inspector, we have included a separate template repair report form (schedule “F”) which could be utilized in the event you do not have a system already in place.

Finally, we have included as schedule “G” a draft report form to fill out when you receive a complaint from the public or a defect is reported by staff. This form has been tailored specifically to include all the necessary information required to successfully implement the City’s policy and its designated service levels. We ask that you seriously consider having your Council review and possibly adopt these documents. We believe they will lead to your success not only in the provision of service but also in our future defence of your claims.

What these policy templates provide is clear, decisive language that will not only assist staff in their implementation, but will also improve the likelihood that MIABC staff can successfully defend your claims if and when they are made. They have been copied onto a USB which you will find included in your package. This will enable you to make any
changes you see fit should you wish to further tailor the documents to the City's specific needs. Finally, to assist with the execution of sidewalk inspections, we have included a measuring device that will make inspections quick, easy and accurate.

We are excited about what the future holds for the members of the MIABC. This sidewalk project is the first of many initiatives that our Risk Management Department is working on. We are in the preliminary stages of developing a software application that our members can use to track hazards electronically. The technology will include checklists, GPS coordinates, a digital camera and diarization system. For more on that project and all the services available to MIABC members, please see the handout entitled “MIABC Risk Management Services” included in this package.

One of the most popular programs we have is the MIABC Risk Management Grant Program. Each member has a Risk Management Grant account in which funds are deposited every year by the MIABC for use by our members to finance risk management initiatives. The only requirement is that members identify the initiative and describe how they believe it will reduce liability claims in their community. The best part is that we are usually able to process a member’s successful application and provide funding within 72 hours. The City of Courtenay currently has a risk management grant balance of over $30,000 that could be used at any time.

Finally, because sidewalks do not exist in isolation, we have included a brochure that the City could use to educate owners of private and commercial property about their rights and responsibilities when it comes to the adjacent boulevards and laneways. This is but one example of several brochures dealing with issues faced by local government staff. A list of all brochures available is on the order form included in this package. Simply tick off the brochures you would like the MIABC to publish and we will take care of the rest. This service is entirely free as a member of the MIABC.

Once you have had an opportunity to review these materials, please feel free to contact our staff at any time. A directory is included in your package. We are here to assist you any way we can and in particular, to help identify some initiatives the City could fund using its risk management grant money. Thank you again for taking the time to review this package and we look forward to hearing from you.

Sincerely,

Lindsay Nilsson
MIABC Risk Management Coordinator
Schedule A shows sidewalk claims losses as broken down into adjusting cost, legal cost, and indemnity payments. The figures are low relative to other members of a similar population.
Schedule B depicts the success rate of defense for sidewalk claims. The MIABC is 62% successful at defending sidewalk differential claims.
Schedule C

Courtenay Sidewalk Claim Frequency

Schedule C depicts the trend in sidewalk claim frequency from 1988-2011. Courtenay adopted a sidewalk inspection policy in the summer of 1995; a more consistent pattern in claims emerged after that year.
Schedule D is a more detailed look into the effect of the inspection policy. The frequency of sidewalk accidents did not see change after the policy change, but the total loss is dramatically lower.
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>CATEGORY</th>
<th>MARKED</th>
<th>FOLLOW UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Nearest Civic Address)</td>
<td>(heave, crack, etc...)</td>
<td>(Level 1, 2 or 3)</td>
<td>(Y/N)</td>
<td>(Y/N)</td>
</tr>
</tbody>
</table>

City of Courtenay - Annual Inspection Record | 2013

NAME: ____________________________
TITLE: ____________________________
DATE: ____________________________

Schedule E
City of Courtenay - Record of Repairs 2013

<table>
<thead>
<tr>
<th>NAME:</th>
<th>TITLE:</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>FOLLOW UP</th>
<th>DATE REPAIRS COMPLETED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCHEDULE "F"
City of Courtenay

SIDEWALK INSPECTION REQUEST & REPORT FORM

Initiated by: ____________________________

Phone Contact: ________________________

Date of Report: ___________ Time: ___________

Description of issue: __

Civic Address: __

Location Description: __

Description of defect being reported: __

Date & Time of Accident (if any) ___

Inspected by: ___

Time & Date of Inspection: ___

Measurement of Defect: ___

Level 1 ☐ Level 2 ☐ Level 3 ☐

Action taken: ___

Additional Comments: ___

__

☐ Completed Signature: ___

SCHEDULE 'G'

P49
SCOPE:

This statement outlines the City’s policy regarding the establishment of a system of inspections and maintenance for sidewalks located within the City of Courtenay.

POLICY:

A system for the inspection and maintenance of sidewalks that is reasonable and balances protection from the risks associated with defects in sidewalks with the other priorities of the City of Courtenay is required. City of Courtenay Council believes that the system of inspections and maintenance established by this policy is reasonable in all of the circumstances, given the allocation of budgetary resources and the availability of City of Courtenay personnel and equipment.

The policy is as follows:

- The City will annually inspect all sidewalks within the City boundaries to determine areas requiring repair and/or replacement. Inspections will be noted on the “City of Courtenay – Annual Inspection Record” (Schedule B).
- Members of the public are encouraged to immediately report any observed defects in sidewalks located in the City of Courtenay to the Director of Operations and/or his designate(s). Reports will be recorded on the “Sidewalk Inspection Request and Report Form” (Schedule A).
- Within 24 hours of receiving any report of observed defects, the Director of Operations and/or his designate(s) attend the site of the reported defect or hazard and inspect the sidewalk to determine the repairs necessary to be undertaken in accordance with this policy.
 - The following repair guidelines apply in respect of defects or hazards in sidewalks observed by the Director of Operations and/or his designate(s).

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>WHAT TO DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>A differential of less than 1.25 cm (1/2 inch)</td>
<td>No service required.</td>
</tr>
<tr>
<td>Level 2</td>
<td>A differential of between 1.25 cm (1/2 inch) and 2.5 cm (1 inch)</td>
<td>List for further inspection in 6 months’ time</td>
</tr>
<tr>
<td>Level 3</td>
<td>A differential greater than 2.5 cm (1 inch)</td>
<td>Repair within one week and mark immediately</td>
</tr>
</tbody>
</table>

AUTHORIZATION: Date: March 2013
<table>
<thead>
<tr>
<th>City of Courtenay Policy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 11: Engineering and Public Works</td>
<td>Policy #</td>
</tr>
<tr>
<td>Subject: Sidewalk Inspection and Maintenance</td>
<td>Revision # R-3</td>
</tr>
</tbody>
</table>

- The Director of Operations and/or his designate(s) will prepare and maintain annual written documentation noting areas inspected, any observed defect or hazard in sidewalks, the date the defect or hazard was observed, the work performed to repair the defect or hazard, the date the defect or hazard was repaired and before and after photographs if possible.
City of Courtenay

SIDEWALK INSPECTION REQUEST & REPORT FORM

Initiated by: __

Phone Contact: __

Date of Report: ________________________ Time: _____________

Description of issue: ___________________________________

Civic Address: __

Location Description: ____________________________________

Description of defect being reported: ________________________

Date & Time of Accident (if any) ___________________________

Inspected by: ___

Time & Date of Inspection: _________________________________

Measurement of Defect: ___________________________ Level 1
Level 2
Level 3

Action taken: ___

Additional Comments: ___________________________________

□ Completed Signature: ___________________________ Schedule A
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DESCRIPTION (heave, crack, etc...)</th>
<th>CATEGORY (Level 1, 2 or 3)</th>
<th>MARKED (Y/N)</th>
<th>FOLLOW UP (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest Civic Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THE CORPORATION OF THE CITY OF COURtenAy

REPORT TO COUNCIL

FROM: Kevin Lagan, P. Eng.
 Director of Operational Services
Peter Crawford, MCIP, RPP
 Director of Development Services

FILE #: 5500-20

DATE: March 11, 2013

SUBJECT: District Energy System

C.A.O. COMMENTS/RECOMMENDATIONS:

That the recommendation of the Director of Operational Services be received.

RECOMMENDATION:

That Council support the concept of a District Energy System in the Lerwick/Ryan Road area adjacent to the Comox Valley Hospital; and

That City staff participate in the facilitation of the system on the basis that the City not become the owner or operator of the system.

PURPOSE:

To facilitate the development of a District Energy System adjacent to the CV Hospital.

BACKGROUND:

City Council received a report on the subject of a District Energy Opportunity at their regular meeting on September 17th, 2012 and the following resolution was passed:

"That Council provide approval in principal to the concept of the District Energy opportunity;"

"That Council approve proceeding with a feasibility study in order to further investigate and define the project details and cost/benefit of this proposed project; and"

"That staff report back to Council with the results of the feasibility study, and seek further Council direction on the proposed project."

As requested by Council, a report from Farallon Consultants Ltd titled "Feasibility Study for a District Energy System" dated February 21, 2013 is attached. The study concludes that a District Energy System would be viable if potential clients paid $140/MWh. The project would create three full time jobs as well as the additional economic value related to the supply of biomass. It was also indicated that there could be a reduction in CO2e emissions of 1600 tonnes/year with a modest increase in truck traffic. The estimated cost of the facility including the energy centre for biomass and natural gas, the distribution pipe work and the energy transfer station is approximately $7m including taxes. This does not include any possible grants or other funding sources.
DISCUSSION:

The generation of heat from biomass (wood waste) with a back up natural gas fuel source is a good option to heat the several government and institutional facilities in the Lerwick/Ryan Road area. The study by Farallon has examined this concept and provided a positive report on the viability. City staff had initial thoughts on taking a lead role in pursuing the study and possibly being the operator of such a facility. However there are several factors which now suggest that the City should assist in the continued facilitation of this concept but not as the owner or operator. These factors include:

- there is no City owned land in the area of the load centre,
- the City does not have any buildings in the vicinity of the propose energy centre,
- the majority of the energy (approximately 60%) would be consumed by the CV hospital,
- borrowing in the amount of $7m would be required,
- the City does not presently operate any facilities of this type, and
- the CV hospital project has indicated an interest in this project as has the private sector.

FINANCIAL IMPLICATIONS:

Only staff time would be required to assist in the facilitation of the process. This is covered in the general administrative costs section of the operating budget.

STRATEGIC PLAN REFERENCE:

Value statement 2 – A progressive and sustainable community – Goal 4: Support diversification of the local community.

OCP SUSTAINABILITY REFERENCE:

No specific reference.

REGIONAL GROWTH STRATEGY REFERENCE:

Goal 8: Climate Change. Objective 8-A: Reduce GHG emissions created by the building sector.

Respectfully submitted,

Kevin Lagan, P. Eng
Director of Operational Services

Peter Crawford, MCIP, RPP.
Director of Development Services

Allan Gornall, B.Sc.
Sustainability Planner
Feasibility Study for a District Energy System
City of Courtenay

Prepared for:
Mr. Allan Gornall, B.Sc.
Sustainability Planner
City of Courtenay

Submitted by:
Stephen Salter P.Eng., LEED AP
Farallon Consultants Limited

Final Report
February 21, 2013
Contents

Disclaimer and Limitations...4
Executive Summary ...5
Glossary ...6
Introduction ..7
Description of the District Energy System ..8
 Sustainable Energy Sources ..12
 District Energy Routing ..14
 Potential Energy Centre Locations ...16
 Future Developments ..17
 Shared Interests in the District Energy System ...17
Capital Cost Estimates...18
 Energy Centre ..18
 Distribution Piping ...20
 Energy Transfer Stations ...22
 Construction Soft Costs ..24
Economic Aspects ..26
 Pricing of District Energy ..26
 Estimated District Energy Rates ...26
Environmental Aspects ..28
 Greenhouse Gas Emissions ...28
 Air Emissions ..28
 Other Environmental Aspects ...30
Regulatory Aspects ...31
Social Aspects ...32
Ownership Models ..41
Potential Sources of Incentive Funding ...47
Challenges and Benefits ..49
Risks and Risk Mitigation ..51
Conclusions ...53
Recommendations ..54
Acknowledgements ...55
Closure ..56
Appendix I - Assumptions and Inputs ..57
Appendix II - Consulting Team ...59
Appendix III - References ...60
List of Figures
Figure 1. Courtenay District Energy System Building Clusters...8
Figure 2: District Energy Routing Modelled in the Study...15

List of Tables
Table 1: District Energy System Building Data...10
Table 2: Estimated Building Energy Consumption...11
Table 3: Biomass Fuel Requirements..13
Table 4: Energy Centre and District Energy System Capacities...16
Table 5: Capital Cost Summary, Energy Centre...18
Table 6: Capital Cost Summary, Distribution Piping ...20
Table 7: Capital Cost Summary, Energy Transfer Stations...22
Table 8: Greenhouse Gas Emission Reductions..28
Table 9: Comparison of Air Emissions...29
Table 10: District Energy System Jobs and Business Generation..36
Table 11: Economic Impacts of District Energy..37
Table 12: District Energy System in Canada Serving Municipal Markets.....................................41
Table 13: District Energy System Ownership Models in Canada...42
Table 14: Potential Challenges and Benefits...49
Table 15: Risks and Mitigation Measures ..51
Disclaimer and Limitations

The information in this study has been compiled to offer a preliminary assessment of the potential for a District Energy System for the City of Courtenay. The authors have prepared this document at the request of the City of Courtenay, solely for this purpose.

Reasonable skill, care and diligence has been exercised to assess the information acquired during the preparation of this study, but no guarantees or warranties are made concerning the accuracy or completeness of this information. This document, the information it contains, the information and basis on which it relies, and factors associated with implementation of district energy are subject to changes that are beyond the control of the authors. The information provided by others is believed to be accurate, but has not been verified.

This study includes screening-level estimates of costs and revenues that should not be relied upon for design or other purposes without verification. The authors do not accept responsibility for the use of this study for any purpose other than that stated above, and do not accept responsibility to any third party for the use, in whole or in part, of the contents of this document. This study applies to the City of Courtenay and cannot be applied to other jurisdictions without analysis. Any use by the City of Courtenay, its sub-consultants or any third party, or any reliance on or decisions based on this document, are the responsibility of the user or third party.

The materials contained in this report (text, tables, figures and drawings included herein) are the copyright of Farallon Consultants Limited. The City of Courtenay is given permission to reproduce the materials, but any other use of these materials must be given in writing by Farallon Consultants Limited.

The construction cost estimates in this report provide an opinion of probable cost based on normal competitive conditions from multiple contractors. The costing information and data contained herein represent FVB Energy’s best professional judgment in light of the knowledge and information available to FVB Energy at the time of preparation.

This report replaces the draft report of January 21, 2013.
Executive Summary

Background
The potential for a District Energy System in the vicinity of the planned Comox Valley Hospital was identified in a 2012 CVRD study of resource recovery opportunities in the region. This report provides the results of a more detailed study of the technical and economic feasibility of the District Energy System.

Methodology
Modelling of the system was based on the actual energy consumption of existing buildings, and the expected energy consumption of planned buildings. Estimates of capital and operating costs of the District Energy System were developed to estimate the price the City would need to receive for energy sold to clients from the system.

Conclusions
A District Energy System in Courtenay would be economically viable if potential clients pay $140/MWh of delivered heat. In order to make a correct comparison between the cost of purchasing heat from a District Energy System and the cost of their Business-as-Usual option, potential clients will need to carefully analyze their costs of providing heat to their buildings, including fuel costs, sales taxes, carbon tax, carbon offsets (for publicly-owned buildings), operations and maintenance, licensing and insurance, and the cost of owning boilers and related equipment over time. Potential clients will also need to assess the value of the price stability over time that district energy can provide.

The system would create three direct full-time jobs, in addition to the economic value related to the local supply of biomass.

The system would reduce greenhouse gas emissions by approximately 1,600 tonnes of CO2e per year, equivalent to 400 cars.

Deliveries of biomass to the system would result in a very modest truck traffic increase of 0.02% above the current levels.

Recommendations
The City of Courtenay should communicate the price for district energy indicated by this study to potential energy clients, including the Vancouver Island Health Authority, North Island College, the CVRD on behalf of the Aquatic Centre, and School District 71 on behalf of Queneesh Elementary School, and any other potential district energy clients in order to gauge their interest. If the response is positive, then the City should consider proceeding with the next steps in the development of the District Energy System, including entering Memoranda of Understanding with energy clients, securing long-term sources of biomass, seeking funding from senior levels of government, and engaging in stakeholder consultation.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>Business-as-Usual</td>
</tr>
<tr>
<td>BDT</td>
<td>Bone Dry Tonne of biomass</td>
</tr>
<tr>
<td>CVRD</td>
<td>Comox Valley Regional District</td>
</tr>
<tr>
<td>CO$_2$e</td>
<td>Carbon dioxide equivalent</td>
</tr>
<tr>
<td>District Energy System</td>
<td>District Energy System</td>
</tr>
<tr>
<td>DHW</td>
<td>Domestic Hot Water</td>
</tr>
<tr>
<td>EFLH</td>
<td>Equivalent Full Load Hours</td>
</tr>
<tr>
<td>FSR</td>
<td>Floor Space Ratio</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>GJ</td>
<td>Gigajoule of energy</td>
</tr>
<tr>
<td>GWh</td>
<td>Gigawatt hours of electricity</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>HHV</td>
<td>Higher Heating Value of biomass</td>
</tr>
<tr>
<td>IRR</td>
<td>Integrated Resource Recovery</td>
</tr>
<tr>
<td>IRR</td>
<td>Internal Rate of Return</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LHV</td>
<td>Lower Heating Value of biomass</td>
</tr>
<tr>
<td>MWe</td>
<td>Megawatts of electrical energy</td>
</tr>
<tr>
<td>MWt</td>
<td>Megawatts of thermal energy</td>
</tr>
<tr>
<td>MURBS</td>
<td>Multi-Unit Residential Buildings</td>
</tr>
<tr>
<td>VIHA</td>
<td>Vancouver Island Health Authority</td>
</tr>
</tbody>
</table>
Introduction

In January, 2012 Farallon Consultants Limited was engaged by the CVRD to find resource recovery options with the potential to reduce greenhouse gas emissions, support the local economy, and recover the cost of their initial investment.

The resulting report described two promising options: an anaerobic digestion facility that could produce biomethane from organic solid waste, and provide an estimated $3 million per year of greater value to taxpayers than the Business-as-Usual alternative, and a District Energy System in the area of the Comox Valley North Island College Campus.¹

In May, 2012, the Vancouver Island Health Authority announced plans to construct two new hospitals on Vancouver Island: the Campbell River Hospital and the Comox Valley Hospital. The Comox Valley Hospital Master Program indicates a main building size of 29,500 m², and capacity for 180 beds. This announcement improved the potential for the District Energy System for two reasons. First, the Hospital's energy consumption would represent a significant part of the overall capacity of the District Energy System. Second, the Hospital could potentially benefit by saving the cost of a new boiler system, and by allocating space that would otherwise be required for boilers to health care services.

In October, 2012 the City of Courtenay engaged Farallon Consultants Limited to further investigate the feasibility, costs, and benefits of a District Energy System in the vicinity of the planned the Comox Valley Hospital. Farallon engaged FVB Energy Inc., a firm that specializes in district energy design, to model the energy loading and economics of the District Energy System. This report provides the results of the feasibility study.

Description of the District Energy System

A District Energy System includes three main components: an Energy Centre, distribution piping, and Energy Transfer Stations within client buildings. The Energy Centre would include biomass boilers, pollution control equipment, natural gas boilers to meet peak demand and to provide back-up capacity, pumps, and controls. Hot water from the boilers is circulated to client buildings in a closed loop of insulated steel pipes, buried below the frost line. The Energy Transfer Stations within client buildings include heat exchangers with hot water from the distribution piping on one side of the exchanger, and water from the building's hydronic heating system on the other. The Energy Transfer Stations also include valves and controls that interface with the building's energy control systems, along with meters to measure the amount of energy delivered to each building.

During the CVRD's 2012 Integrated Resource Recovery study, the concentration of energy demand in the group of buildings near the North Island College was noted. This demand included buildings on the NIC campus, the Comox Valley Aquatic Centre, Queneesh Elementary School, the planned Comox Valley Hospital, and the planned Mission Professional Buildings. This cluster of buildings was of interest since the economics of district energy are favoured by concentrations of energy demand that exist within short distances.

![Figure 1. Courtenay District Energy System Building Clusters](image)

On May 18, 2012 Stephen Salter, P.Eng. met with David Graham, Director of Facilities Management and Andrew Thomas, Manager of Facilities Management, North Island College to explore their interest in a District Energy System. This very positive meeting confirmed that the College is interested in low-carbon sources of energy, and in expanding its offering of hands-on trades training in sustainable energy.
Also on May 18, 2012 Stephen Salter, P.Eng. gave a presentation on district energy to the Vancouver Island Health Authority's Vancouver Island Facilities Maintenance and Operations Team. The potential for a District Energy System on or near the site of the planned Comox Valley Hospital was discussed, as well as the fortunate timing that could allow the energy systems of the new hospital to be designed to take the greatest advantage of sustainable energy sources. VIHA has expressed a strong interest in heating its buildings with low-carbon energy.

On May 23, 2012 Stephen Salter, P.Eng. was asked by Deanna Fourt, Director of Energy Efficiency and Conservation Facility Maintenance, VIHA to join a meeting among VIHA, Partnerships BC, and the technical consultants responsible for drafting the terms of reference and performance criteria for the planned Comox Valley Hospital. The option of drafting the performance criteria in such a way that the new Hospital could take advantage of low-temperature heat (for example from waste heat recovery) was discussed. The possibility of receiving energy from a District Energy System in which the energy source is outside the Hospital is of interest to VIHA, since this would allow space normally allocated to energy utilities to be reprogrammed for other uses.

A District Energy System based on low-carbon energy supplying energy to the CVRD's Comox Valley Aquatic Centre would support a number of objectives in the Comox Valley Sustainability Strategy.

District Energy Modelling

In order to assess the feasibility of developing a District Energy System in this area, information concerning energy consumption in the existing buildings was collected. Building owners were also asked for their views concerning the option of connecting their buildings to a District Energy System supplied from a low-carbon source. The existing buildings were also toured, to interview operators and to uncover any practical or technical challenges to connecting these buildings to a District Energy System. For planned buildings, the energy consumption of comparable structures was used, with allowances for the greater energy efficiency of new buildings.

Cooling demand in the existing buildings included in this Study is not significant. The planned Comox Valley Hospital however is very likely require cooling, which could be provided through absorption or adsorption chillers with heat energy provided by the District Energy System.
Table 1 below lists the information collected for existing buildings.

Table 1: District Energy System Building Data

<table>
<thead>
<tr>
<th>Building Information</th>
<th>Heating System</th>
<th>Domestic HW System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Name</td>
<td>Boiler Make, Type, and Fuel</td>
<td>Boiler Make, Type, and Fuel</td>
</tr>
<tr>
<td>Building Type</td>
<td>Boiler Capacity</td>
<td>Boiler Capacity</td>
</tr>
<tr>
<td>Year Built</td>
<td>Boiler Efficiency</td>
<td>Boiler Efficiency</td>
</tr>
<tr>
<td>Ownership (Public/Private)</td>
<td>Boiler Installed Date</td>
<td>DHW Storage Capacity</td>
</tr>
<tr>
<td>Building Size</td>
<td>Supply Temperature</td>
<td>Supply Temperature</td>
</tr>
<tr>
<td>Address</td>
<td>Return Temperature</td>
<td></td>
</tr>
<tr>
<td>Name of the Owner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of the Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building energy information was then analyzed, and potential District Energy System routes were tested. Estimates of capital costs and ongoing maintenance, administration, and administration costs were developed. This information was then processed in a model to estimate the price at which energy would need to be sold in order for the district energy utility to cover its costs. In addition, the environmental and social aspects of the District Energy System were evaluated.

Over 90% of the energy would be consumed by publicly-owned buildings. The cost of energy for these buildings includes not only the carbon tax at $1.50 per GJ of natural gas, but also the cost of carbon offsets to achieve carbon neutrality at $1.25 per GJ of natural gas.

Table 2 below summarizes the estimated energy demand in buildings that have been included in the feasibility study. The Aquatic Centre figures only include energy consumption for heating water.
Table 2: Estimated Building Energy Consumption

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Ownership</th>
<th>Building Area</th>
<th>Peak Heating Load (kW)</th>
<th>Displaced Heating Energy (MWh/yr)</th>
<th>Displaced Full Load Hours (Hrs/yr)</th>
<th>Estimated Seasonal Boiler Efficiency (%)</th>
<th>Total Gas Use (GJ/yr)</th>
<th>Total Gas Use per m² (MJ/yr/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queneesh Elementary School</td>
<td>Public</td>
<td>5,745</td>
<td>340</td>
<td>370</td>
<td>1,088</td>
<td>70%</td>
<td>1,879</td>
<td>327</td>
</tr>
<tr>
<td>NIC: Discovery Hall</td>
<td>Public</td>
<td>1,923</td>
<td>120</td>
<td>260</td>
<td>2,167</td>
<td>60%</td>
<td>1,585</td>
<td>824</td>
</tr>
<tr>
<td>NIC: Raven Hall</td>
<td>Public</td>
<td>1,284</td>
<td>80</td>
<td>180</td>
<td>2,250</td>
<td>60%</td>
<td>1,058</td>
<td>824</td>
</tr>
<tr>
<td>NIC: Puntledge Hall</td>
<td>Public</td>
<td>1,442</td>
<td>90</td>
<td>200</td>
<td>2,222</td>
<td>60%</td>
<td>1,188</td>
<td>824</td>
</tr>
<tr>
<td>NIC: Komoux Hall</td>
<td>Public</td>
<td>2,417</td>
<td>150</td>
<td>330</td>
<td>2,200</td>
<td>60%</td>
<td>1,992</td>
<td>824</td>
</tr>
<tr>
<td>Aquatic Centre</td>
<td>Public</td>
<td>N/A</td>
<td>300</td>
<td>790</td>
<td>2,633</td>
<td>60%</td>
<td>4,766</td>
<td>N/A</td>
</tr>
<tr>
<td>Planned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comox Valley Hospital</td>
<td>Public</td>
<td>29,000</td>
<td>2,030</td>
<td>4,930</td>
<td>2,429</td>
<td>70%</td>
<td>25,354</td>
<td>874</td>
</tr>
<tr>
<td>Mission Professional North</td>
<td>Private</td>
<td>2,649</td>
<td>160</td>
<td>280</td>
<td>1,750</td>
<td>70%</td>
<td>1,457</td>
<td>550</td>
</tr>
<tr>
<td>Mission Professional South</td>
<td>Private</td>
<td>2,769</td>
<td>170</td>
<td>300</td>
<td>1,765</td>
<td>70%</td>
<td>1,523</td>
<td>550</td>
</tr>
<tr>
<td>Totals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Losses:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3%</td>
</tr>
<tr>
<td>Diversification:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>Total After Diversification & Losses:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,100</td>
</tr>
</tbody>
</table>
Sustainable Energy Sources

In the course of the CVRD Integrated Resource Recovery Study, the option of recovering waste heat from transformers in BC Hydro's Courtenay Substation (which is located within a few hundred metres of the Courtenay District Energy System) was analyzed. Heat pumps would be required to recover waste heat from utility transformers, an approach that has been used elsewhere.\(^2\) A recent example of this form of heat recovery was completed in London's Bankside Substation, which began to provide 600 kW of heat to the adjacent Tate Modern art gallery in 2011. Representatives of BC Hydro were contacted regarding their interest in this arrangement, and responded that the utility will not pursue heat recovery from substations at this time.

Biomass boilers were chosen for modelling in this Study. The advantages of biomass as a source of energy for the Courtenay District Energy System are:

- Biomass can provide energy at high-temperatures, which will be compatible with existing building energy systems as well as new buildings, and makes the further option of adsorption chilling possible;
- Biomass combustion would reduce greenhouse gas emissions by displacing natural gas in buildings served by district energy;
- Biomass in the form of urban wood waste and industrial wood residues is available in the Comox Valley; and
- Unlike natural gas, biomass fuel can be stored on the Energy Centre site, and also on the site of the local provider. This ability to store fuel contributes to the energy security of the District Energy System.

Biomass boilers can also be equipped with pollution controls to limit particulate emissions to levels that are comparable to emissions from natural gas boilers (air emissions are addressed in section the Environmental Aspects section of this report).

The table below shows the quantities of biomass that would be required for the District Energy System.

Table 3: Biomass Fuel Requirements

<table>
<thead>
<tr>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity Required, Green</td>
<td>1.</td>
</tr>
<tr>
<td>4,600 Green Tonnes/Year</td>
<td></td>
</tr>
<tr>
<td>Quantity Required, BD</td>
<td></td>
</tr>
<tr>
<td>2,800 BDT/Year</td>
<td></td>
</tr>
<tr>
<td>Traffic</td>
<td>2.</td>
</tr>
<tr>
<td>4.5 Trucks/Week</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>3.</td>
</tr>
<tr>
<td>80 BDT/Year</td>
<td></td>
</tr>
<tr>
<td>Storage Required, Days</td>
<td></td>
</tr>
<tr>
<td>2 Days</td>
<td></td>
</tr>
<tr>
<td>Storage Required</td>
<td></td>
</tr>
<tr>
<td>45 m²</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Based on an average moisture content of 40% for urban wood waste.
2. Based on 20-tonne tractor-trailers.
3. Based on an ash content of 3%. This quantity of ash would require one 20-tonne truck every 3 months.

In the course of this Study, several firms involved in sourcing and processing waste wood in the Comox Valley were contacted in order to develop an opinion of the availability and likely price of biomass. This background work showed that biomass is available in the quantities that would be required by the District Energy System, at an estimated average price of $45/BDT.

Further, the City of Courtenay may have access to a second, independent source of biomass. Approximately 5,000 tonnes/year of wood that is currently used for composting biosolids would become surplus if the CVRD chooses to develop an Integrated Anaerobic Digestion Facility. This facility is estimated to provide approximately $3 million/year of greater value to Comox Valley taxpayers than the Business-as-Usual alternatives for organic solid waste.³

District Energy Routing

The optimum routing for a district energy network is shown in the figure below. During the detailed design stage of a District Energy System, it may be possible to further optimize the route, taking into account the potential locations of additional future demand.
Figure 2: District Energy Routing Modelled in the Study
Potential Energy Centre Locations

Figure 2 shows a conceptual routing for the district energy piping, and for the Energy Centre. The Energy Centre is shown roughly in the centre of the cluster of potential district energy client buildings in order to minimize the length and cost of distribution piping.

Ideally, a location for the Energy Centre would be chosen that would provide North Island College personnel with access to support their sustainable trades training curricula, and that would address VIHA's need to comply with the CSA standard Z317.2-10. Our understanding of this standard is that if the source of district energy is located on VIHA property, then the Hospital would not need to incorporate a back-up source of heat. One option that could meet the interests of both VIHA and the North Island College could be to locate the Energy Centre on the boundary of the two organizations' properties.

The table below shows the capacities of equipment that would be required for the Courtenay District Energy System.

Table 4: Energy Centre and District Energy System Capacities

<table>
<thead>
<tr>
<th>District Energy System</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak System Demand</td>
<td>3.1 MW</td>
<td>1.</td>
</tr>
<tr>
<td>Displaced Heating Energy</td>
<td>7,900 MWh/yr</td>
<td>1.</td>
</tr>
<tr>
<td>Biomass Boiler Capacity</td>
<td>1.0 MW</td>
<td>2.</td>
</tr>
<tr>
<td>Peaking and Back-up Boiler</td>
<td>2.0 MW</td>
<td>3.</td>
</tr>
<tr>
<td>Peaking and Back-up Boiler</td>
<td>2.0 MW</td>
<td>3.</td>
</tr>
<tr>
<td>Total Capacity</td>
<td>5.0 MW</td>
<td></td>
</tr>
<tr>
<td>N-1 Capacity</td>
<td>3.0 MW</td>
<td>4.</td>
</tr>
<tr>
<td>Length of Distribution Piping</td>
<td>1,220 m</td>
<td></td>
</tr>
<tr>
<td>Number of Energy Transfer Stations</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Based on modelling of the actual energy consumption of existing buildings, and the estimated energy consumption of planned buildings.

2. The biomass boiler would be base-loaded, and although its capacity would only be

approximately 30% of the peak capacity, it would provide approximately 85% of the total energy required.

3. Two natural gas boilers would provide redundancy.

4. 15% of total energy provided by back-up boilers and peaking boilers

5. This would be the capacity available in the event that either of the largest boilers was unavailable.

Future Developments

At the time of this Study, the CVRD was considering potential locations for a new office facility, with the design and location to be chosen within the next few years.

The City of Courtenay has also been considering the option of building a new fire hall in the vicinity of the North Island College. If the fire hall and CVRD office are both located near the Courtenay District Energy System, then these buildings could also be served by a District Energy System. Further, the *Comox Valley Sustainability Strategy* calls for new CVRD buildings to achieve LEED Gold accreditation.\(^5\) Connection to a low-carbon source of heat would make it simpler to achieve this accreditation.

As the Courtenay District Energy System undergoes further development, the costs and benefits of providing additional capacity in the system for future growth can be modelled.

Shared Interests in the District Energy System

British Columbia is experiencing a shortage of Power Engineers, and the North Island College has expressed its interest in expanding its sustainable energy offerings.\(^6\) If an arrangement can be made for the NIC to have access to the Energy Centre, then opportunities for hands-on trades training and research could result.

If the Courtenay District Energy System is developed, the new Comox Valley Hospital could potentially be designed without a conventional energy plant. Space and capital that would otherwise be consumed by this plant would be available for other healthcare purposes. The Hospital could also be designed to take advantage of cooling from district energy by means of adsorption chillers.

The Courtenay District Energy System would also support a number of objectives in the *Regional Growth Strategy* and the *Comox Valley Sustainability Strategy*.

Finally, any new buildings served by the Courtenay District Energy System would qualify for LEED credits in the area of sustainable energy.

\(^5\) Leadership in Energy & Environmental Design

\(^6\) Personal communication between Stephen Salter, P.Eng. and David Graham, Director of Facilities Management, North Island College.
Capital Cost Estimates

Energy Centre

The Energy Centre capital cost estimate is based on a delivered total heating capacity of 3.1 MWt from a combination of natural gas and biomass boilers. Major equipment in the Energy Centre would include:

- One of 1 MWt biomass boiler equipped with an economizer;
- An electrostatic precipitator for the biomass boiler;
- Two of 2 MWt natural gas boilers without economizers;
- Primary variable speed distribution pumps with pump controllers;
- Boiler circulation pumps;
- An emergency generator with capacity for one natural gas boiler and circulation pump, and one primary distribution pump;
- One 12 m tall biomass boiler stack, and one 12 m tall stack for the natural gas boilers.

Table 5: Capital Cost Summary, Energy Centre

<table>
<thead>
<tr>
<th>Energy Centre Cost Estimate</th>
<th>Installed Capacity</th>
<th>($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural/Civil/Structural</td>
<td>104 m²</td>
<td>$307,000</td>
</tr>
<tr>
<td>Electrical Installation</td>
<td>500 kVA</td>
<td>$240,000</td>
</tr>
<tr>
<td>Mechanical Installation</td>
<td>4 MWt</td>
<td>$489,000</td>
</tr>
<tr>
<td>Process Equipment</td>
<td>4 MWt</td>
<td>$377,000</td>
</tr>
<tr>
<td>GC Admin OH & P, Const Mgmt, and HST</td>
<td></td>
<td>$250,000</td>
</tr>
<tr>
<td>Subtotal Construction</td>
<td></td>
<td>$1,663,000</td>
</tr>
<tr>
<td>Soft Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td>$191,000</td>
</tr>
<tr>
<td>Design Contingency</td>
<td></td>
<td>$166,000</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas SubTotal</td>
<td></td>
<td>$2,020,000</td>
</tr>
<tr>
<td>Biomass Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural/Civil/Structural</td>
<td>110 m²</td>
<td>$321,000</td>
</tr>
<tr>
<td>Electrical Installation</td>
<td>500 kVA</td>
<td>$110,000</td>
</tr>
<tr>
<td>Mechanical Installation</td>
<td>1 MWt</td>
<td>$193,000</td>
</tr>
<tr>
<td>Process Equipment</td>
<td>1 MWt</td>
<td>$883,000</td>
</tr>
<tr>
<td>GC Admin OH & P, Const Mgmt, and HST</td>
<td></td>
<td>$265,000</td>
</tr>
<tr>
<td>Subtotal Construction</td>
<td></td>
<td>$1,772,000</td>
</tr>
<tr>
<td>Soft Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td>$168,000</td>
</tr>
<tr>
<td>Design Contingency</td>
<td></td>
<td>$177,000</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass Module SubTotal</td>
<td></td>
<td>$2,117,000</td>
</tr>
<tr>
<td>Grand Total (incl. Tax)</td>
<td></td>
<td>$4,137,000</td>
</tr>
</tbody>
</table>
Detailed Costing Assumptions

Cost estimates assume purpose-built structures as follows:

- A building housing the boilers, pumps, heating system auxiliaries, electrical room, and staff areas of 104 m2, with an assumed building height of 6 m at a cost of $250 per square foot;
- A building housing the biomass combustion unit of 65 m2, with an assumed building height of 13 m at a cost of $250 per square foot;
- A fuel storage area of 45 m2, sized for 50 hours of storage at 1 MWt output, at a cost of $175 per square foot;
- Required utility services are assumed to be available at the lot line;
- Generally all process areas assumed to be 8 inch thick reinforced concrete slab on grade;
- Exterior primary transformers, ESP, and heat dump radiators on concrete pads;
- Allocation for electric utility primary service and plant substation; and
- Installation assumed to be via single lump sum contract with general contractor.

Source of Cost Data

Generally the Energy Centre capital has been estimated using the following:

- FVB in house data base from previous community energy projects; and
- Unit costing from Means 2nd Quarter 2012 Costing for the City of Victoria.

Construction Soft Costs

Construction soft costs include for the following:

- 7.5% for General Contractor OH&P;
- 2.5% for permitting, bonding, & insurance;
- 2.5% for construction management & supervision; and
- 12% for Harmonized Sales Tax.

Owner’s Soft Costs

Owner’s soft costs include engineering costs, design and construction support, and design & construction contingency.

Exclusions

The budgets exclude:

- LEED Accreditation;
- Land costs;
- Legal fees and expenses;
- Loose furnishings and equipment;
- Erratic market conditions, such as lack of bidders;
- Accelerated schedule;
- Site environmental evaluation and remediation if needed; and
- Blasting or significant bedrock removal.
Accuracy of Costing Assumptions

The cost estimates provided are based on concept sketches and are preliminary with an accuracy of -20% to +45%.

Distribution Piping

The distribution piping capital cost has been estimated based on the following:

- Medium Temperature Hot Water (MTHW) System, European st37.0, DIN 2458 (EN253 Standard) thin walled steel pipe, insulated with polyurethane foam insulation, High Density Polyethylene outer jacket and a built-in leak detection system;
- Design Conditions:
 - Supply Temperature: 115 °C
 - Return Temperature: 75 °C
 - Design Pressure: 1,600 kPa (232 psig)

- Piping costs include mechanical (material & installation) and civil costs;
- Communication conduits and wiring are included along the distribution routing;
- An allocation is made for manholes, mobilization and demobilization, road crossing planning and barricading, and x-ray testing.

Table 6: Capital Cost Summary, Distribution Piping

<table>
<thead>
<tr>
<th>Distribution Piping</th>
<th>Heating ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical - Material & Installation</td>
<td>$360,000</td>
</tr>
<tr>
<td>Civil - Excavation, Backfill & Reinstatement</td>
<td>$466,000</td>
</tr>
<tr>
<td>DPS Subtotal</td>
<td>$826,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construction Soft Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor Admin., Bonding, Insurance & OH&P</td>
<td>20.0%</td>
</tr>
<tr>
<td>Construction Management & Supervision</td>
<td>4.0%</td>
</tr>
<tr>
<td>Construction Change Allowance</td>
<td>3.0%</td>
</tr>
<tr>
<td>Harmonized Sales Tax</td>
<td>12.0%</td>
</tr>
<tr>
<td>Construction Soft Costs Subtotal</td>
<td>$322,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner’s Soft Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering (Design & Construction Support)</td>
<td>10.0%</td>
</tr>
<tr>
<td>Contingency (Design & Pricing)</td>
<td>10.0%</td>
</tr>
<tr>
<td>Owner’s Soft Costs Subtotal</td>
<td>$230,000</td>
</tr>
<tr>
<td>DPS Total</td>
<td>$1,378,000</td>
</tr>
</tbody>
</table>

Detailed Costing Assumptions

- All distances are based on Google Maps;
• Trench depth allows for 900 mm cover to top of pipe;
• Price includes supply and return lines;
• Pricing assumes LOGSTOR Series 1 insulation;
• Installation assumed to be via single lump sum contract with the general contractor;
• Mechanical and civil costs include allowance for mobilization and demobilization, subcontractors, bonding and insurance;
• Off-site hauling has not been included;
• U-loops are assumed for expansion purposes;
• Assumes 10% of welds will be x-ray tested; and
• Welded isolation ball valves are included in the cost for each branch connection (inside building penetration).

Source of Cost Data

Generally the distribution piping capital has been estimated using the following:

• FVB in house data base from previous community energy projects; and
• Unit costing from Means 3rd Quarter 2012 Costing for the City of Victoria.

Construction Soft Costs

Construction soft costs include for the following:

• 4% for construction management and supervision;
• 20% for General Contractor OH&P, administration, bonding & insurance; and
• 12% for Harmonized Sales Tax.

Owner’s soft costs include engineering costs, design and construction support, and design & construction contingency.

Exclusions

• Blasting or significant bedrock excavation;
• Easement procurement;
• Premium time (for off-hours work or an accelerated schedule);
• Permitting;
• Owner’s project development, marketing of service, and accounting costs;
• Owner’s project management or onsite inspector/supervisor;
• Third party QA/QC inspection;
• Inflation;
• Erratic market conditions, such as lack of bidders; and
• Escalation for deferred, phased or future works.

Accuracy of Costing Assumptions

The cost estimates provided are based on concept sketches and are preliminary with an accuracy of -20% to +35%.
Energy Transfer Stations

In general the energy transfer station costs are based on the following:

- The costs are representative for the design and construction of multiple Energy Transfer Stations (i.e. a minimum of four) in the same phase of work;
- ETS costs reflects an indirect connection (via heat exchangers) based on a district heating supply temperature of 115 °C; and
- ETS costs include primary side piping, equipment and instrumentation with additional costs added as necessary for internal piping to reach mechanical rooms and to include building secondary system modifications.

Table 7: Capital Cost Summary, Energy Transfer Stations

<table>
<thead>
<tr>
<th>Energy Transfer Station</th>
<th>Heating ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4500 kW of Heating (9 Heating ETS’s)</td>
<td></td>
</tr>
<tr>
<td>Owner Supplied</td>
<td></td>
</tr>
<tr>
<td>Heat Exchangers</td>
<td>$60,000</td>
</tr>
<tr>
<td>Isolation Valves</td>
<td>$15,600</td>
</tr>
<tr>
<td>Controls & Metering</td>
<td>$141,600</td>
</tr>
<tr>
<td>Owner Supplied Subtotal</td>
<td>$217,200</td>
</tr>
<tr>
<td>Contractor Supplied</td>
<td></td>
</tr>
<tr>
<td>Mechanical & Electrical Material and Installation</td>
<td>$663,700</td>
</tr>
<tr>
<td>Additional Primary & Secondary Modifications</td>
<td>$170,000</td>
</tr>
<tr>
<td>Contractor Supplied Subtotal</td>
<td>$833,700</td>
</tr>
<tr>
<td>Construction Soft Costs</td>
<td></td>
</tr>
<tr>
<td>General Contractor Overhead and Profit</td>
<td>Included</td>
</tr>
<tr>
<td>Construction Management and Supervision</td>
<td>4%</td>
</tr>
<tr>
<td>Harmonized Sales Tax</td>
<td>12%</td>
</tr>
<tr>
<td>Subtotal Construction</td>
<td>$168,100</td>
</tr>
<tr>
<td>Owner’s Soft Costs</td>
<td></td>
</tr>
<tr>
<td>Engineering (Design, Construction and Commissioning Support)</td>
<td>15%</td>
</tr>
<tr>
<td>Contingency</td>
<td>10%</td>
</tr>
<tr>
<td>Subtotal Owner’s Soft Costs</td>
<td>$304,800</td>
</tr>
<tr>
<td>Total ETS Cost (w/ Taxes)</td>
<td>$1,523,800</td>
</tr>
</tbody>
</table>
Detailed Costing Assumptions

- Pricing reflects a combined commercial grade control system and thermal metering;
- Pricing reflects all primary side and a set of main secondary isolation valves; and
- Typically pricing assumes sufficient floor space for the ETS in a ground or basement level mechanical room within 10 metres of the DPS penetration, unless otherwise noted.

- **Comox Valley Hospital:**
 - Space heating: Two heat exchangers at 65% of peak load capacity each for 2,650 kW of total installed capacity.
 - Domestic hot water: Two heat exchangers at 50% load each for 1,160 kW of installed capacity.

- **Queeneesh Elementary School:**
 - Space heating: One heat exchanger at 120% capacity, 400 kW installed capacity.
 - Domestic hot water: One heat exchanger at 100% capacity, 115 kW installed capacity.
 - ETS room located on the second floor near the back of the building.

- **North Island College Discovery Hall:**
 - Space heating: One heat exchanger at 120% of peak load, installed capacity 150 kW.
 - No domestic hot water heat exchanger.
 - ETS room located in the centre of the building and would require removal of one of the boilers.

- **North Island College Raven Hall:**
 - Space heating: One heat exchanger at 120% capacity, installed capacity 100 kW.
 - No domestic hot water heat exchanger.
 - Allowance for ETS room not located within 10m of basement exterior wall.

- **North Island College Puntledge Hall:**
 - Space heating: One heat exchanger at 120% capacity, installed capacity 100 kW.
 - No domestic hot water heat exchanger.
 - Allowance for ETS room not located within 10m of basement exterior wall.

- **North Island College Komoux Hall:**
 - Space heating: One heat exchanger at 120% capacity, installed capacity 150 kW.
 - No domestic hot water heat exchanger.
 - ETS room located in the second floor / penthouse of building.
• **Aquatic Centre:**
 - Space heating: Three heat exchangers at 160% capacity each, total installed capacity 500 kW.
 - No domestic hot water heat exchanger.
 - ETS room located in the centre of the building and would require removal of one of the boilers.

• **Mission Professional North and South:**
 - Separate ETS for the North and the South buildings.
 - Space heating: One heat exchanger at 120% capacity, installed capacity 200 kW, for each building.
 - Domestic hot water: One heat exchanger at 100% capacity.
 - ETS room located in the centre of the building and would require removal of one of the boilers.

Source of Cost Data
Generally the energy transfer station capital has been estimated using FVB in house data base from previous community energy projects.

Construction Soft Costs
Construction soft costs include the following:

- 4% for Construction Management and Supervision;
- General Contractor OH&P is included; and
- 12% for Harmonized Sales Tax.

Owner’s Soft Costs
Owner’s soft costs include engineering costs, design and construction support, and design & construction contingency.

Exclusions
- Premium time (for off-hours work or an accelerated schedule);
- Asbestos or other hazardous material abatement;
- Removal of existing equipment;
- Cost of permitting;
- Owner’s project development, marketing of service, and accounting costs;
- Owner’s project management or onsite inspector/supervisor;
- Commissioning of system;
- Third party QA/QC inspection;
- LEED Accreditation/certifications;
- Erratic market conditions, such as lack of bidders;
Inflation; and
Escalation for deferred, phased or future works.

Accuracy of Costing Assumptions
The cost estimates provided are based on concept sketches and are preliminary with an accuracy of -20% to +35%.
Economic Aspects

Pricing of District Energy

District energy is sold in units of energy delivered to clients, rather than in units of natural gas that would otherwise be burned to produce this energy. When natural gas is burned in a boiler or furnace, not all of the energy in the purchased gas is converted to heat in the building. If a natural gas boiler is 70% efficient for example, then 100 GJ of purchased natural gas will produce 70 GJ of useful heat in a building, and the remainder will be lost. The price of district energy accounts for this fact, since district energy is priced on the basis of heat actually provided to the building. This total cost of energy is higher in smaller buildings than in larger ones.

In addition, the cost of natural gas is only one part of the cost of delivering heat to a building, which includes:

- Fuel costs
- Sales taxes
- Carbon tax
- Carbon offsets for publicly-owned buildings
- Operations and maintenance
- Licensing and insurance
- The cost of owning (and replacing) the boiler and related equipment over time

The capital and operating cost estimates for district energy in the current study include all costs to provide energy to a building, including the Energy Centre, distribution piping, and energy transfer stations (consisting of heat exchangers and controls). Building owners would not pay to connect to the District Energy System.

Estimated District Energy Rates

To test the economic viability of the Courtenay District Energy System, the capital costs, annual costs, and potential annual revenues from sales of energy to clients were modelled. The analysis is included here to give a preliminary indication of whether or not the net value of the system would be positive. The analysis is somewhat conservative since it does not take into account the value to VIHA of the avoided capital cost of an in-house energy plant in the planned Comox Valley Hospital.

The analysis is based on a nominal interest rate of 4.65% from the Municipal Finance Authority (MFA). Because the MFA accrues interest on the principal repaid by a municipality, the actuarial or effective interest rate for a 25-year amortization is approximately 2.54%. Other financial and technical assumptions are shown in Appendix I - Assumptions and Inputs.

Revenues received by the District Energy System utility were modelled to consist of two parts: a capacity charge of $19.65/month per kW of required capacity, and a consumption charge of $0.03/kWh. This combination would result in an average, blended energy price to clients of $140/MWh. These rates were chosen to cover the estimated annual costs of operations,
maintenance, depreciation, financing charges, biomass fuel, and natural gas for back-up and peak demand.

Individual clients would need to accurately assess their Business-as-Usual costs to determine if it is advantageous for them to subscribe to the Courtenay District Energy System. To make a correct comparison between the cost of purchasing heat from a District Energy System and the cost of the Business-as-Usual option, potential clients will need to carefully analyze all costs of providing heat to their buildings, including fuel costs, sales taxes, carbon tax, carbon offsets for publicly-owned buildings, operations and maintenance, licensing and insurance, and the cost of owning and replacing boilers and related equipment over time. Potential clients will also need to assess the value of the price stability over time that district energy can provide.

Previous feasibility studies by the Study Team found that the overall cost of the natural gas Business-as-Usual option was relatively insensitive to a reduction in the price of natural gas. In one study, a natural gas price reduction of 25% for example, would only reduce the total cost of producing heat from natural gas by approximately 11%. This is a result of the fact that the cost of fuel is only one component of the overall cost of supplying energy to a building.
Environmental Aspects

Greenhouse Gas Emissions

It is conservatively assumed that none of biomass for the Courtenay District Energy System would be diverted from landfills. If biomass is in fact diverted from landfills to the Courtenay District Energy System, the resulting greenhouse gas reductions would be significantly greater as a result of avoided methane emissions from decomposing wood in the landfill.

The District Energy System would result in a net reduction in greenhouse gas emissions in the City of Courtenay of 1,628 tonnes/year of CO$_2$e, as shown in the table below.

<table>
<thead>
<tr>
<th>Source</th>
<th>BAU (Natural Gas)</th>
<th>Energy System (Biomass)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Boilers</td>
<td>1,976</td>
<td>260</td>
<td>1.</td>
</tr>
<tr>
<td>Biomass Combustion</td>
<td>-</td>
<td>88</td>
<td>2.</td>
</tr>
<tr>
<td>Total</td>
<td>1,976</td>
<td>348</td>
<td>3.</td>
</tr>
</tbody>
</table>

Notes

1. Units are in tonnes/year of CO$_2$e.
2. Although carbon dioxide from biomass is considered in the *BC Reporting Regulation Methodology Manual* to be biogenic and therefore carbon-neutral, biomass combustion does result in minor emissions of oxides of nitrogen and methane which are included here.
3. Calculations for emissions related to combustion of natural gas and biomass were completed per the *BC Reporting Regulation Methodology Manual*.

Air Emissions

Particulates are the most notable emission from biomass boilers. The biomass boiler modelled in this study would incorporate air pollution controls in the form of an electrostatic precipitator to limit particulate emissions.

For perspective, BC Ministry of Environment permit limits on average particulate emissions from pulp and paper mill biomass boilers (approximately fifty times larger than the system described for the North Island College District Energy System) are typically between 135 mg/m3 and 320 mg/m3 of stack gases. On the other hand, particulate emissions from the Courtenay District Energy System are expected to be less than 10 mg/m3, which is only slightly higher than the particulate emissions from natural gas boilers.
The criteria air emissions for a biomass energy system were compared with the emissions from natural gas boilers that would otherwise be used to supply heat to the four buildings, are summarized in the table below. The table compares the estimated air emissions from existing natural gas boilers with expected emissions from a biomass boiler. The table shows that a District Energy System based on biomass would reduce greenhouse gas emissions, but would also result in slightly higher emissions of conventional pollutants such NOX.

Table 9: Comparison of Air Emissions

<table>
<thead>
<tr>
<th>Units</th>
<th>BAU (Natural Gas)</th>
<th>Energy System (Biomass)</th>
<th>Change</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG Emissions</td>
<td>tonnes CO₂e/yr</td>
<td>1,976</td>
<td>348</td>
<td>-1,628</td>
</tr>
<tr>
<td>Particulates</td>
<td>mg/m³</td>
<td>9</td>
<td><10</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>tonnes/yr</td>
<td>0.13</td>
<td>0.18</td>
<td>0.05</td>
</tr>
<tr>
<td>NOX</td>
<td>mg/m³</td>
<td>49</td>
<td>194</td>
<td>2., 3.</td>
</tr>
<tr>
<td></td>
<td>tonnes/yr</td>
<td>1.5</td>
<td>3.4</td>
<td>1.9</td>
</tr>
<tr>
<td>CO</td>
<td>mg/m³</td>
<td>91</td>
<td>529</td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>tonnes/yr</td>
<td>1.3</td>
<td>9.4</td>
<td>8.1</td>
</tr>
<tr>
<td>SOX</td>
<td>mg/m³</td>
<td>1</td>
<td>21</td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>tonnes/yr</td>
<td>0.01</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td>VOCs</td>
<td>mg/m³</td>
<td>6</td>
<td>15</td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>tonnes/yr</td>
<td>0.08</td>
<td>0.26</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Notes:
1. The biomass boiler would be equipped with pollution control equipment to limit particulate emissions. As a result, the additional particulate emissions, over and above the emissions from existing natural gas boilers, would be equivalent to the annual output of a single EPA-approved wood stove. For a second comparison, the additional particulate emissions from the biomass boiler would be equivalent to the emissions from a single public transit bus.

2. At the time of this study, the CVRD had not established an air quality bylaw with limits for criteria pollutants. The Metro Vancouver Bylaw No. 1087-2008 however includes the following limits:
 a. For new natural gas boilers, a NOX limit of 60 mg/m3
 b. For biomass boilers, a particulate limit of 18 mg/m3

3. The estimated emissions from existing natural gas boilers and the biomass boiler for particulates, NOX (oxides of nitrogen), SOX (oxides of sulphur), and VOCs (volatile organic compounds) are based on EPA emission factors.\(^9\)

Other Environmental Aspects

The Courtenay District Energy System will also produce approximately 80 tonnes of ash per year. Research is underway in other jurisdictions to find high-value uses for this ash, including blending with compost. In the worst case, the CVRD could be approached concerning the option of using the ash for landfill cover.

The Courtenay District Energy System will not consume significant quantities of water, which will circulate in a closed loop within the system.

Biomass storage would be covered to limit contact with rainwater. Any water from biomass would be collected and discharged to the sanitary sewer. As a result, it is not expected that contained biomass storage would present a risk of contamination to groundwater.

The Courtenay District Energy System would conserve approximately 33,000 GJ/year of natural gas. This estimate includes natural gas required for the District Energy System’s back-up and peaking boilers.

The City of Courtenay could consider incorporating other services within the District Energy System trenching, such as a dedicated pipe to provide buildings with reclaimed water at a later date.

Regulatory Aspects

Implementing a District Energy System in the City of Courtenay will not require regulatory changes. The City will however need to discuss the requirements for an air permit with the Ministry of Environment.

Concerning connections to a District Energy System, some local governments have mandated that new buildings connect to existing District Energy Systems. In the authors' discussions with building owners however, many have expressed their preference to retain the right to choose to connect, based on their estimation of savings. When building owners have been mandated to connect to District Energy Systems, they may believe that if connection is mandatory, it must not be beneficial to their interests. An alternative could be to require new buildings to be designed to take the greatest advantage of district energy, should their owners choose to connect.
Social Aspects

The following social aspects of district energy are discussed in this section:

1. Stakeholder Consultation
2. Local Jobs and Business
3. District Energy System/Community Integration Impacts
4. Public Education and Amenities
5. Impacts on Private Property
6. Quality of Service

Stakeholder Consultation

In the process of developing a District Energy System, the City of Courtenay will need to identify and engage with the stakeholders such as:

- The Vancouver Island Health Authority
- Faculty and Staff of North Island College
- Comox Valley School District 71
- Comox Valley Regional District (operator of the Aquatic Centre)
- City of Comox
- Neighbourhood Associations
- Ministry of Environment

Issues which may be of interest to stakeholders are likely to include the economics of district energy, changes in air emissions versus Business-as-Usual, changes to greenhouse gas emissions, and any noise and traffic associated with biomass deliveries.

The City of Courtenay could engage a specialist to ensure that the community consultation process is fully transparent and provides value to the City and stakeholders. It will also be helpful to provide scale to the questions of truck traffic and air emissions, using information about current conditions and the natural gas BAU option.

In the consultation process, the City of Courtenay could point out that developing a District Energy System involves incorporating an element of our energy supply infrastructure into the City that is normally invisible in Canada. The environmental, health, and safety impacts of the Business-as-Usual (fossil fuel exploration, extraction, refining, and delivery) are invisible to urban citizens, and hence normally out of mind.

Regarding greenhouse gas emissions, the District Energy System would result in reductions comparable to removing approximately 400 cars from the City of Courtenay, and this fact could be a good starting point for discussions with stakeholders.
Traffic

Deliveries of biomass to the District Energy System are expected to result in an increase in traffic of 4.5 trucks per week, which represents a modest increase in local traffic. To put this in perspective, a 2012 study into the anticipated effects on traffic of the Comox Valley Hospital:

1. Measured the 2011 afternoon peak (3-4PM) traffic Eastbound on Ryan Road at approximately 720 vehicles per hour, and Northbound on Lerwick Road at approximately 760 vehicles per hour.

2. Estimated that the Hospital would generate approximately 456 trips in the morning peak (8 to 9AM) and 483 trips in the afternoon peak (3-4PM).10

As such, the addition of 4.5 trucks per week to deliver biomass to the District Energy System would represent an increase of 0.02% above the volumes of traffic in the two daily rush-hour periods.

The fuel delivery system can be designed to allow trucks to travel in one direction only while unloading wood chips, to avoid noise from back-up alarms. The City would also be able to choose the best time of day for deliveries in order to coincide with the least busy traffic periods.

Local Jobs and Business

The financial modelling in this study resulted in an estimate of the ongoing costs of direct labour of $180,000 per year, the equivalent of three full-time jobs.

In general, the development of a District Energy System involves a substitution of infrastructure for fossil fuel. The Business-as-Usual (BAU) fossil fuel is consumed but not produced in the City, whereas the work to construct, operate and maintain the District Energy System would be done to a large extent within the City. More importantly, some sustainable energy technologies use fuel produced in the City. For example, local businesses would be involved in sourcing, preparing, and delivering biomass fuel to the District Energy System. Therefore, establishment of the District Energy System is expected to create incremental jobs and opportunities for businesses to supply goods and services during both the construction and operating stages. In turn, these businesses purchase parts and other goods and services from other businesses thereby creating indirect jobs. These indirect jobs are referred to as Tier 2 and Tier 3 effects in the reference discussed below used as a guide in this analysis.

Further, some of the additional income of workers and businesses will be re-spent thereby inducing further employment. The indirect and induced employment could, in theory, be estimated roughly using economic multipliers against the direct jobs, if suitable economic multipliers were available. In reality, validated economic multipliers for these specific types of jobs applied specifically to the City of Victoria are not available to the best of FVB’s knowledge. However, the analysis may still be worthwhile as a comparative, and an illustrative, exercise using factors

that have been used in other studies. Clearly, the local employment factors for biomass are higher than for natural gas or electricity. It is useful, in the context of this study, to suggest some quantitative estimates.

In the case of the Courtenay District Energy System, the fuel that would be displaced is natural gas. The reduction in cost to customers for energy commodities achieved by the District Energy System, possibly supplemented with funding assistance from senior levels of government, would notionally pay for *most of* the wages of the jobs created and other inputs to construct operate and maintain the District Energy System. The qualifier “most of” is used because the District Energy System creates other savings to customers in the capital, replacement capital and operation and maintenance cost of in-building heat systems. Reduction of BAU capital and operating cost for in-building heating systems eliminates jobs to an extent, but the BAU work is not so much eliminated as diverted to more valuable activities.

For example, building operators can devote more attention to running a better building to the benefit of the owners and occupants after being liberated from the chore of looking after the heating system, because it no longer needs so much care when it consists of a simple heat exchanger that is any case the responsibility of the District Energy System. Similarly, the manufacturers and engineers who would have otherwise have been employed to supply and install inefficient building heating systems can instead devote their efforts to developing more efficient and sustainable systems not only for building heating but in other fields that contribute to enhanced sustainability of the community.

Therefore, no attempt will be made in this analysis to offset the jobs created by the District Energy System with any “lost” in the BAU scenario. Even with this simplification, precise quantitative estimation of the economic development impact is still complex, being very place, time and technology dependent, with little simple guidance or relevant data readily available.

One simple guide recommended by Natural Resources Canada that appears to be applicable and reasonable is a paper that was published in 2006 by a university professor in Denmark entitled Socio-economic and Regional Benefits Employment Assessment. The recommended method is a production chain analysis. For simplification, only Tier 1, i.e. direct jobs, are estimated in this analysis, which, by itself would provide too conservative results. As a result, these are then grossed up using economic multipliers. The best approach readily available that has some validity, especially in a comparative exercise, is to use multipliers that FVB has used for a similar purpose drawn from a recent economic study in another community in western Canada\(^1\).

The average number of jobs per year created locally are calculated from dollars spent, the local share, the share of wages and the average wages in dollars per year. This is done for capital investment, non-fuel operation and maintenance (O&M) and fuel and summed, after dividing the number of jobs from capital investment by the years in the study period to get the average per year during the study period. This methodology seems quite logical and clearly points to the importance of fuel type as the most significant factor in social impact.

The methodology and results are summarized in the table below using most of the same factors as estimated in the referenced paper for the local share (30% for capital, 80% for O&M, 100% for

biomass fuel and 0% for fossil fuel or electricity) and the share of wages at 50% for O&M. Whereas the referenced paper uses 8% as the share of wages for the capital investment, 50% (similar to O&M) is considered more reasonable in the B.C. context, after also factoring for local share.
Table 10: District Energy System Jobs and Business Generation

<table>
<thead>
<tr>
<th>Sector</th>
<th>Local Share</th>
<th>Share of Wages</th>
<th>Average Wage - k$</th>
<th>Jobs - person years</th>
<th>Jobs - average (over 25 years)</th>
<th>Jobs - average over 25 years</th>
<th>Fuel (2012$) (17 years) - k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Share</td>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Wages</td>
<td>50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Wage - k$</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O&M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Share</td>
<td>80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Wages</td>
<td>50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Wage - k$</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of Analysis Period</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Investment - k$</td>
<td>27,800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Share - k$</td>
<td>8,340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Wages (50%) - k$</td>
<td>4,170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobs - person years</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobs - average (over 25 years)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O&M (2012$) (25 years) - k$</td>
<td>29,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Share - k$</td>
<td>23,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Wages (50%) - k$</td>
<td>11,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobs - person years</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobs - average over 25 years</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel (2012$) (17 years) - k$</td>
<td>34,858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Share - k$</td>
<td>34,858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Wages (50%) - k$</td>
<td>17,429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobs - person years</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobs - average over 17 years</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Jobs</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total local business - k$/year</td>
<td>2,656</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
On the whole, the method and the factors seem reasonable as applied to heat energy projects, which was the subject of the referenced paper.

The average wage used in this analysis is $60,000 per year, which is the median for an Operations Manager in British Columbia, according to www.payscale.com.

To be clear, the O&M shown in the table above includes all O&M costs except fuel. The results shown are, for simple presentation purposes, the average each year for 25 years starting in year 1 - although in reality there may be a build-up corresponding to the phased build-out of the District Energy System.

The total economic development impact including indirect and induced local jobs and total income to local business would be represented by the amounts shown multiplied by appropriate economic multipliers. These are difficult to derive with a high level of confidence for a specific project. It is proposed to use the multipliers inferred recently in relation to airport jobs (Saskatoon Airport Authority, 2010); specifically, 1.9 for jobs (Table 2, page 9 of this reference) and 3.02 for the total expenditures (Table 4, page 10). The total economic development impact estimated by using these multipliers is shown in the table below. This might be a bit high because there may be a greater portion of money spent outside the City than was the case for the reference economic study. Therefore, the Table 10: District Energy System Jobs and Business Generation results represent a high estimate.

There is a greater level of confidence in the calculated impact in terms of local share of business expenditures than as further derived in terms of jobs, because the latter involves two additional uncertain variables, i.e. the share of wages and the average wages of those specific jobs that are created. These results are shown in Table 11 below.

Table 11: Economic Impacts of District Energy

<table>
<thead>
<tr>
<th>Economic Multipliers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>1.9</td>
</tr>
<tr>
<td>Total Business Expenditures</td>
<td>3.02</td>
</tr>
<tr>
<td>Jobs</td>
<td>42</td>
</tr>
<tr>
<td>Total Business Expenditures (000$)</td>
<td>8,021</td>
</tr>
</tbody>
</table>

District Energy System development should not be viewed as a major job creation exercise, since it is more capital intensive than labour intensive. But by helping a community become more efficient and energy self-sufficient a District Energy System takes away risk and this reduced risk environment itself strengthens the local economy and is known to have been a factor in facility location decisions by major employers, e.g. IBM in Markham. Similarly, in a high fossil-fuel priced future, including carbon taxes or caps on GHG emissions, developers would prefer to build in locations which have access to a District Energy System with fuel flexibility.

Risk reduction also has economic value. The potential economic risk to the City from long-term...
dependence on heating with natural gas at lower then optimal efficiency is significant in terms of potential increased leakage of dollars from the community.

District Energy System/Community Integration Impacts

Integration issues that have been considered include traffic, noise, odours, public safety and general disruption. Some of the impacts occur for only the construction phase, but these are no different from the familiar impacts of other types of construction (noise, dust, road restrictions etc) for which mitigation measures are conventionally employed.

On-going noise and emissions from the Energy Centre will be subject to regulation. Sometimes members of the public raise the issue that the emissions from individual building stacks are each relatively small as compared with the point source created by a central energy plant. It may be necessary to provide information to the public concerning relative levels of emissions from Energy Centres that are well operated, maintained and subject to regulatory monitoring versus the individual building stacks that are essentially uncontrolled. It may be advisable to take architectural measures to make the Energy Centre more esthetically acceptable to neighbours.

Some prior District Energy System projects that attempted to incorporate biomass in an urban environment have met with community opposition. However, it is possible that there is a growing appreciation of the fact that biomass is widely used for district heating in Europe and has been established in North America for many years in both the largest hot water district heating system in the U.S. in Saint Paul and the largest hot water district heating system in Canada in Charlottetown. More recently there have been start-ups, retro-fits and plans for biomass based District Energy System in Revelstoke, Seattle, Victoria, Prince George and Vancouver. Therefore, with appropriate pollution controls and material handling and storage systems, biomass systems may become easier to integrate into urban locations.

Fuel delivery and storage are another frequently mentioned community impact of biomass. In this case, the biomass fuel requirement has been estimated to be approximately 4,600 tonnes/year which amounts to approximately 4.5 truck loads per week. Storage should be in a closed silo and material handling equipment designed to mitigate spills, dust and odours. For example, in the Seattle Steam System biomass is conveyed from silo to burner pneumatically, which creates a slight negative pressure in the receiving and handling facility thereby reducing duct and odour emissions.

Public Education and Amenities

BAU building boilers are usually hidden away in small, often cluttered and dangerous, dark spaces inaccessible to the public, promoting “out of sight – out of mind” attitudes to energy consumption. In contrast, some District Energy System, e.g. in Markham, Hamilton and Regent Park in Toronto, have welcomed visitors, including large tour groups. These Energy Centres are well lit, clean and tidy and spacious to allow room for maintenance and equipment replacement.

The Energy Centre can be made into a public amenity suitable for hosting tour groups for public education about the fundamentals of energy conversion and its environmental impact.
Impact on Private Property

A District Energy System is installed mainly in the public realm. The portion which is installed on private property are the Energy Transfer Stations (ETS), which are relatively quiet, low maintenance and small, consisting basically of stationary insulated equipment with water flowing through but no moving parts other than small control valves and little impact on their host building.

ETS will occupy less space than the boilers they replace, and in addition, domestic hot water (DHW) storage tanks are not necessary with district heating. The exact amount of space saved will vary with the overall size and type of building and alternate system design. As an illustration, a typical multi-residential building with 200 units might save in the order of 30 m² indoors.

The replacement of building equipment such as boilers, furnaces, hot water heaters and stacks by simple heat exchangers saves money, space and complexity in building design.

Greater architectural freedom is achieved, e.g. in the use of roofs for gardens, decks or terraces, resulting in more and superior quality public and/or private outdoor space. Determining where to place air intakes in relation to stacks is no longer an issue.

Natural gas can also be eliminated from buildings, which represents enhanced public safety.

Quality of Service

District energy provides a more reliable and effective service as compared with the BAU approach. Reliable service is assured by having redundant equipment, employing qualified operators and by continuous monitoring.

Heating coils in air handling units provides a means of controlling indoor air temperature while allowing good ventilation. Building residents must no longer suffer the noise, emissions, vibration, safety, space and repair and maintenance issues created by operating mechanical equipment distributed throughout the living space. Although fan-coils may still be used, they are much quieter than the compressors used in heat pumps.

Out-sourcing the energy conversion duty of HVAC systems (i.e. those functional parts subject to high temperatures with pumps and fans) greatly reduces the cost and risks associated with installation, commissioning, on-going maintenance and breakdowns.

Replication Potential

High quality energy consumed for building heating and domestic hot water represents a large quantity of “low hanging fruit” in Canada in terms of its potential to be substituted with energy from sources other than fossil fuels or electricity.

The quantity of energy used for building heating and domestic hot water in Canada is very large. According to the Office of Energy Efficiency, Natural Resources Canada:

1. Building operation accounts for approximately one-third of Canada's secondary energy use is due to the operation of buildings. (Secondary energy use means by end users, as opposed to, for example, energy used to generate electricity).
2. 71% of energy used in residential buildings is for space heating and DHW.
3. 58% of energy used in commercial buildings is for space heating and DHW.
5. Commercial buildings consumed annually 1,186 PJ, resulting in 60.9 million tonnes of GHG emissions in 2009.

Clearly a very large amount of energy is used in Canada simply for space heating and domestic hot water (1 PJ = 1 million GJ). On the other hand, district heating currently serves only 1% of the market in Canada versus approximately 50% or more served by district heating in other cold, northern countries. Hence district heating has a large potential for growth. The vision statement of the Canadian District Energy Association is that 30% of the market will be served by district energy by 2030.

Establishment of a District Energy System in Victoria would, by way of example, encourage other systems to become established in similar smaller centres. It would make the concept more acceptable through familiarity to developers and engineers.

For example, a District Energy System was established in Markham Centre in the year 2000 serving only 3 buildings. Today this District Energy System has approximately 25 customer buildings connected or committed and Markham District Energy is currently engaged in starting another District Energy System at the east side of Markham.
Ownership Models

Overview
District energy is not new in Canada, since the first system was installed in 1880. Interest in reducing greenhouse gas emissions, making the best use of local resources, and creating opportunities for energy expenditures to "stay home" in the community have accelerated the development of district energy in recent decades.

Table 12: District Energy System in Canada Serving Municipal Markets

<table>
<thead>
<tr>
<th>Location - Owner</th>
<th>Started</th>
<th>MWt</th>
</tr>
</thead>
<tbody>
<tr>
<td>London - Veresen</td>
<td>1880</td>
<td>100</td>
</tr>
<tr>
<td>Ajax – Index Energy</td>
<td>1941</td>
<td>~25</td>
</tr>
<tr>
<td>Montreal – CCUM (Gaz Metro/ Dalkia)</td>
<td>1947</td>
<td>120</td>
</tr>
<tr>
<td>Toronto - Enwave (BPC/City)</td>
<td>1961</td>
<td>600</td>
</tr>
<tr>
<td>Vancouver – Central Heat</td>
<td>1968</td>
<td>180</td>
</tr>
<tr>
<td>Charlottetown - Veresen</td>
<td>1986</td>
<td>40</td>
</tr>
<tr>
<td>Cornwall - Fortis</td>
<td>1994</td>
<td>14</td>
</tr>
<tr>
<td>Windsor – Split City/BPC</td>
<td>1997</td>
<td>10</td>
</tr>
<tr>
<td>Sudbury – Joint Venture City/Toromont</td>
<td>1999</td>
<td>10</td>
</tr>
<tr>
<td>Markham – Town</td>
<td>2000</td>
<td>25</td>
</tr>
<tr>
<td>Hamilton – City</td>
<td>2003</td>
<td>10</td>
</tr>
<tr>
<td>Lonsdale, North Vancouver – City</td>
<td>2004</td>
<td>5</td>
</tr>
<tr>
<td>Revelstoke – City</td>
<td>2005</td>
<td>2</td>
</tr>
<tr>
<td>Sherwood Park – Strathcona County</td>
<td>2006</td>
<td>2</td>
</tr>
<tr>
<td>Dockside Green–Vancity/Corix/Terasen</td>
<td>2008</td>
<td>2</td>
</tr>
<tr>
<td>Regent Park – Joint Venture City/Corix</td>
<td>2009</td>
<td>25</td>
</tr>
<tr>
<td>SEFC, Vancouver – City</td>
<td>2009</td>
<td>16</td>
</tr>
<tr>
<td>Calgary – City</td>
<td>2010</td>
<td>30</td>
</tr>
</tbody>
</table>

The following sections discuss the governance aspects of various district energy ownership options. In the sections below, the term "City" refers to the City of Courtenay.

Determination of the preferred, viable owner/operator model and governance (e.g. relationship with the City) is a prerequisite to developing a District Energy System. There must be an entity with a clearly defined structure that will be responsible for the project, raise financing and enter
service agreements with customers, whether it is the City itself, an agency or corporation of the City, a Joint Venture or a totally private company.

An identified and credible District Energy System owner is also essential for effective marketing. This is because customers expected to sign long-term service agreements naturally need to understand exactly who would be their counter-party and who they can rely on to deliver this essential service. Prospective customers will want to know the City’s precise plan for ownership and operating structure, or at least the most likely option, if it is not firmly established at the time marketing activity commences.

A summary of different ownership and operating models that have been used in Canada, together with examples of each are listed in the table below. For the purpose of this discussion, the terms “municipal”, “the City”, “Town” or “City” includes wholly owned municipal corporations, agencies or commissions, e.g. Toronto Community Housing Corporation, Markham Enterprises or the Windsor Utilities Commission. More often than not the municipal component of ownership or operation is exercised through a wholly owned corporation, which may itself be part of a holding company, e.g. Markham District Energy is one of several corporations owned by Markham Enterprises and Hamilton Community Energy is one of several corporations owned by Hamilton Utilities. Both Markham Enterprises and Hamilton Utilities are wholly owned by their respective municipalities.

Table 13: District Energy System Ownership Models in Canada

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100% municipal ownership and operation directly (through the engineering services department)</td>
<td>Southeast False Creek (SEFC) Neighbourhood Energy Utility; Strathcona County</td>
</tr>
<tr>
<td>2</td>
<td>100% municipal ownership and operation, through a subsidiary corporation</td>
<td>Markham District Energy; Hamilton Community Energy; Calgary</td>
</tr>
<tr>
<td>3</td>
<td>100% municipal ownership with private sector operation</td>
<td>Revelstoke Community Energy; Lonsdale Energy</td>
</tr>
<tr>
<td>4</td>
<td>Joint Venture between a municipality and a private sector company (the private sector company may provide operating expertise)</td>
<td>Enwave; Regent Park Energy; Sudbury District Energy</td>
</tr>
<tr>
<td>5</td>
<td>Split ownership and operation, the municipality owning and operating the distribution systems with private sector owning and operating Energy Centre</td>
<td>Windsor Utilities Commission/Ontario Municipal Employees Retirement System</td>
</tr>
<tr>
<td>6</td>
<td>100% private ownership and operation</td>
<td>Dockside Green Energy; Central Heat Distribution, Veresen (London and Charlottetown); Cornwall; Ajax</td>
</tr>
</tbody>
</table>
Attributes of these six models are discussed below.

Control

The Triple Bottom Line values to the City include social and environmental benefits that do not strictly benefit outside investors. The City is sensitive to community concerns and environmental benefits, which may not be entirely consistent with maximization of profit.

In order to protect its interests, the City may desire a certain level of continued oversight. Some influence or control can be exercised, regardless of ownership, through Bylaws and agreements.

FVB’s experience of participating in a team of advisors tasked with drafting agreement provisions to retain desired oversight after transfer of ownership, including reversion of ownership triggered by unacceptable performance, was that the legal issues became very difficult and, in fact, the attempt was abandoned after considerable expenditure on professional services. This experience supports the approach of achieving control simply through level of ownership.

It is generally recommended that, if possible, municipalities take majority control of district energy start-up Joint Ventures. That allows some risk reduction, in the limit up to almost half, while still maintaining control, not compromising access to funds only available to municipalities nor the moral high-ground in terms of relations with customers and the public. Accordingly, the discussion and scoring in this Section assumes municipal majority control of Joint Ventures.

Efficient Governance

The governance of the District Energy System must, at a minimum, allow for the conduct of the required business activities, such as execution of long-term service contracts, procurement of goods and services needed for construction and operation, collection of bills and operation and maintenance of the system. The ability to take on debt is also usually required.

There should be a dedicated District Energy System manager with necessary approval for day to day management and the responsibility for business planning and recommending larger investments to a higher approval authority.

The District Energy System could be managed through an existing City organization. Alternately, the City could establish a partly or wholly owned corporation, under the B.C. Community Charter and Local Government Act. This may more efficiently provide for the establishment of reasonably required approval authorities; e.g. it may be easier to contract out the operation of the system, which would be desirable in order to secure the desired level of expertise. Otherwise, management of the District Energy System inside the City organization may be subject to rules and restrictions that are intended to apply to the City’s other operations, which would be different in nature, e.g. they may be non-profit oriented or suited to monopoly services with obligations to serve.

The corporate form could provide the flexibility to raise capital if needed through selling shares, i.e. bringing in a private partner.

It is desirable to have no cross-subsidization between the District Energy System and other City operations. The governance structure however must enable the District Energy System manager
Experience has shown that Model 5, split ownership, does not promote efficient system planning and expansion and is therefore not recommended despite its apparent attraction. The apparent attraction is that the municipality limits its financial responsibility to the district energy component that is familiar, namely underground piping. But this model has not proven successful in supporting system expansion and deployment of efficient technologies such as Combined Heat and Power (CHP) to the extent that might have been expected in the one location where it has been tried. The experience of Windsor has been that incentive for growth or enhancement is removed because such investments would require negotiations between the two parties, for which neither has the appetite.

With respect to the relationship between District Energy System owners and management, Sudbury, North Vancouver, Revelstoke, Dockside Green and Regent Park are examples where the District Energy System owners employ private operators under contract. Windsor also does this after a fashion by contracting for energy wholesale from an Energy Centre owned and operated by a private company. In the case of Sudbury, Dockside Green and Regent Park these operators are also part owners (Sudbury 50%, the other two < 50%).

On the other hand, Cornwall, Markham, Hamilton, Vancouver, Strathcona County and Calgary proceeded to build and operate their District Energy System without private partners or operators. In the case of Cornwall, Markham and Hamilton, local electric distribution utilities were originally involved and it still is in the case of Calgary. This provides the benefit of a utility management structure during development and construction. Being a relatively minor and therefore low priority department of a non-district energy utility is generally not a preferred governance model for a District Energy System long-term. Markham and Hamilton subsequently split off the District Energy System as separate wholly owned corporations, with dedicated staff having district energy experience. Vancouver and Strathcona County established the District Energy System as public utilities managed through their engineering services departments.

Cost of Capital

The experience of those involved in structuring Public-Private-Partnership (P3) deals is that the involvement of private capital is more costly. The value it imparts to the public partner is transfer of risk, i.e. private capital at risk instead of public capital. A similar approach for district energy runs into the dual challenge of 1) district energy start-ups in Canada tend to much smaller than typical P3 deals, e.g. in the order of $10 million investment versus over $50 million and 2) the IRR achievable for a district energy is constrained, as it must be competitive with BAU alternatives that are less capital intensive.

FVB has completed many district energy feasibility studies generally finding IRR in the range of 8-12%. If this project proceeds it is likely that the rates (customer prices) will be consistent with an IRR in this range. Whether this IRR would be sufficient to attract private interest can only be discovered through engaging prospective investors. The following factors might then influence the amount and cost of capital that could be raised from the private sector.

It will help if all possible steps are taken to reduced risk, e.g. confirm willingness of customers to
sign long-term, and develop firm service agreements at specified rates.

The deal may be sweetened for private interests if they are also given an operations contract and this approach was used in Sudbury and Regent Park. This would provide additional revenue to the private partner and allow them to mitigate their risk by active management.

There is always a limit to the amount of capital a private partner would be willing to commit to a given project. Assembly of government support might then be needed in order to fully fund the project.

Revenue from projected connection of customers, whether existing or new development, is not assured until they have made commitments to enter service agreements. Since projected revenue from uncommitted customers is higher risk it may be discounted in the view of the prospective private partners’ assessment of how much capital they would be willing to commit to the project.

Risk

The nature and management of risks associated with district energy development are discussed more fully in a later section of this report. Reduction of financial risk to the municipality represents value that private partners can bring. Financial risk is the possibility that for whatever reasons the actual net revenue may turn out to be different than the amount the City was counting on. The impact would be softened to the extent the City had less investment committed because part of the required investment was contributed by a partner. A private partner may also contribute management skills that can help avoid negative variances.

The 100% private owner model will take away a large part of the risk from the City. Not all the risk will be taken away because if the District Energy System turns out to be problematic for the community, the City may be pressured by its citizens to take it over. That happened in Ajax, although subsequently the Town managed to transfer the District Energy System to another private company.

The extent to which private ownership would reduce the risk to the City is proportional to the % of private ownership and whether they are also involved in the operation, which may be one of their conditions. However, the optimal level of private ownership and risk reduction must take into account the cost and other City goals, such as Control. There is always a cost to risk reduction that must be weighed in this evaluation. The cost will be lower to the extent that the private partners have ways to manage the risk.

In this case, the marketing risk may be difficult for private partners to mitigate. The City is likely to have more influence on customer connection than the private partners could have.

The private sector is adept at managing construction risk in general, but again, at a cost. If the City wishes to retain some level of ownership, especially majority ownership, then it should retain its own independent engineers even if it relies on the private partner to manage the design and construction and this alone will add to the capital cost.

The primary role of the partner may be to determine optimal timing. For example, as the engine supplier to the Sudbury District Energy System, Toromont had a high level of expertise in the design and construction of CHP facilities, therefore it made sense to participate early and take some of the construction risk. On the other hand, Corix was recruited as a partner in the Regent
Park Community Energy System by Toronto Community Housing Corporation not so much for their design and construction management skills as for their district energy management skills and therefore it made sense to form the Joint Venture later in the development cycle, in fact after design had been completed, but before system commissioning.

Regulation

Privately owned District Energy System in B.C. are subject to rate regulation by the B.C. Utilities Commission, but municipally owned systems are not. In general, it is less costly to be unregulated, so this would be another factor giving a relatively minor advantage to 100% or majority municipal ownership. There should be a relatively small difference in revenue, whether regulated or not, since it is essentially constrained by the need to offer a competitive service.
Potential Sources of Incentive Funding

At the time of this study, the Province had not allocated new funding for the Public Sector Energy Conservation Agreement. Local governments, however, have access to sources of capital specifically designed to assist with sustainable energy and waste diversion initiatives, including the FCM's Green Municipal Fund, and the UBCM Gas Tax Fund.

Federation of Canadian Municipalities –The Green Municipal Fund

The FCM's GMF program offers loans in combination with grants for capital projects in the energy, transportation, waste and water sectors. The maximum loan amount is $10 million, with the grant portion being up to 20% of the loan to a maximum of $1 million.

Organizations eligible for funding through this source include:

- Municipal governments
- Agencies owned entirely by municipal governments
- Public non-governmental or private groups applying with a municipality

Guidelines and application forms, as well as more detailed information, can be accessed on the Federation of Canadian Municipalities website under the heading “The Green Municipal Fund” (http://fcm.ca/home/programs/green-municipal-fund.htm).

UBCM Gas Tax Fund

The Gas Tax Fund provides funding for local governments for capital projects in the following categories:

- Public Transit
- Community Energy
- Solid Waste
- Water and Wastewater
- Capacity Building / Integrated Community Sustainability Planning

Evaluation criteria for the Gas Tax Fund include the following:

- How much the project is expected to contribute to reduced greenhouse gas emissions, cleaner air or cleaner water;
- How well the project is linked to broader planning initiatives in the community;
- The degree to which the project develops or supports strategic infrastructure investment decisions or links to sustainability and capital investment plans;
- The degree to which the project uses sustainability principles or leads to sustainable
community outcomes;

- The capacity of the project to provide new innovative research, testing, technology, methodology or approaches that may be used by other jurisdictions in planning or implementing sustainable infrastructure;

- The capacity of the project to improve public and/or environmental health or to move the community towards evolving environmental or health protection standards; and

- The degree to which the project supports inter-jurisdictional cooperation in planning and implementing infrastructure priorities.

A District Energy System based on biomass from a central facility that also reduces the cost of energy to a local hospital could score well against these criteria. Further information can be found on the UBCM website (http://www.ubcm.ca/EN/main/funding/gas-tax-fund.html).
Challenges and Benefits

The table below summarizes the potential barriers and benefits of a District Energy System in the City of Courtenay.

Table 14: Potential Challenges and Benefits

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Challenge</th>
<th>Benefit</th>
</tr>
</thead>
</table>
| Economics | Developing the District Energy System will require approximately $7 million in capital. | Provided that the Business-as-Usual costs of fossil fuel energy for clients is accurately assessed and greater than $140/MWh, revenues from sales of energy can cover the costs of the system over time.
Economic turnover related to the District Energy System will remain in the Comox Valley. |
| Environment | A District Energy System will increase emissions of air conventional pollutants such as particulates. | Because the biomass boiler would be equipped with pollution controls the additional particulate emissions, over and above the emissions from existing natural gas boilers, would be equivalent to the annual output of a single EPA-approved wood stove or a single transit bus.
The District Energy System would reduce greenhouse gas emissions by a total of 1,628 tonnes/year. |
| Governance | No governance-related challenges are anticipated. | A District Energy System supports a number of Provincial initiatives for greenhouse gas reductions, green energy, and diversion of waste from landfills.
Diversion of additional wood waste from the regional landfills also supports diversion targets set by the CVRD. |
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Challenge</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social</td>
<td>The public may have concerns with respect to new sources of air emissions, and the small increase in truck traffic.</td>
<td>The public supports initiatives to reduce greenhouse gas emissions. The addition of 4.5 trucks per week to deliver biomass to the District Energy System would represent an increase of 0.02% above traffic the two daily rush volumes. A District Energy System based on local biomass will result in local jobs and will support the local economy.</td>
</tr>
<tr>
<td>Energy</td>
<td>No energy-related challenges are anticipated.</td>
<td>Unlike natural gas, biomass fuel can be stored on the Energy Centre site, and also on the site of the local provider. This ability to store fuel contributes to the energy security of the District Energy System. Energy from biomass can meet the existing and future needs of buildings for both high-temperature and lower-temperature energy.</td>
</tr>
</tbody>
</table>
Risks and Risk Mitigation

Basic risks and suggested mitigation measures are listed below, and a more detailed assessment of risks will need to be carried out at a detailed feasibility stage. The scales for severity and probability are 1 to 5.

Table 15: Risks and Mitigation Measures

<table>
<thead>
<tr>
<th>Risk</th>
<th>Severity</th>
<th>Probability (over 25 yrs)</th>
<th>Suggested Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>The cost of wood residues may rise over time.</td>
<td>3</td>
<td>3</td>
<td>The City of Courtenay will also need to implement long-term biomass supply contracts with alternative, private sector sources of biomass.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The administrations of the CVRD and the City of Courtenay should also cooperate on initiatives divert additional wood waste from the region's landfills.</td>
</tr>
<tr>
<td>Actual capital costs may differ from the estimates in this study.</td>
<td>3</td>
<td>2</td>
<td>Feasibility studies of other District Energy Systems have found that the overall price of energy is relatively insensitive to changes in capital cost, since this cost is financed over time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capital cost estimates would be refined however during the detailed design and development of the Courtenay District Energy System.</td>
</tr>
<tr>
<td>The technologies required for the District Energy System may not perform as well as expected.</td>
<td>4</td>
<td>1</td>
<td>The technologies involved in the District Energy System have been demonstrated extensively elsewhere, and in over one hundred systems in Canada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contracts with equipment suppliers (e.g. suppliers of biomass boilers) should include performance clauses.</td>
</tr>
</tbody>
</table>
Risk Assessment Table

<table>
<thead>
<tr>
<th>Risk</th>
<th>Severity</th>
<th>Probability (over 25 yrs)</th>
<th>Suggested Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>District energy clients may not choose to subscribe to the District Energy System.</td>
<td>5</td>
<td>1</td>
<td>The City of Courtenay can enter into agreements to develop the Courtenay District Energy System further, concurrently with the conceptual design of the planned Comox Valley Hospital (taking place during 2013). In addition, contracts with district energy clients can index the price of energy to the rate of general inflation rather than to the actual price of fossil fuels. If the price of fossil fuels continues to rise over time, then the price advantage of district energy to building owners will also increase over time.</td>
</tr>
<tr>
<td>The permitting process for a biomass system may be more difficult than expected.</td>
<td>4</td>
<td>1</td>
<td>The City of Courtenay will need to invest effort in community and stakeholder consultation before applying for a permit, in order to ensure that the costs and benefits of a biomass system are well understood by stakeholders. The biomass system modelled in this study includes air pollution controls to reduce particulate emissions.</td>
</tr>
<tr>
<td>A change in Provincial government could result in the elimination of the carbon tax, and of the requirement for publicly-owned organizations to reduce or offset their carbon emissions.</td>
<td>2</td>
<td>2</td>
<td>The price of district energy in this study takes into account the carbon tax and the value of avoided carbon offsets for publicly-owned organizations, but the overall contribution of carbon taxes on the price of energy from the natural gas Business-as-Usual alternative is modest.</td>
</tr>
</tbody>
</table>
Conclusions

1. A District Energy System in Courtenay would be economically viable if potential clients pay $140/MWh of delivered heat. In order to make a correct comparison between the cost of purchasing heat from a District Energy System and the cost of the Business-as-Usual option, potential clients will need to carefully analyze their costs of providing heat to their buildings, including fuel costs, sales taxes, carbon tax, carbon offsets (for publicly-owned buildings), operations and maintenance, licensing and insurance, and the cost of owning boilers and related equipment over time. Potential clients will also need to assess the value of the price stability over time that district energy can provide.

2. The economics of district energy for new buildings such as the planned Comox Valley Hospital and the planned Mission Professional Buildings will be more evident than for existing buildings, since the cost of boilers and dedicated utility spaces can be avoided for new buildings served by district energy. The space that would otherwise be occupied by utilities could also be re-programmed to generate revenue (in the case of privately-owned buildings) or for health care purposes (in the case of the planned Comox Valley Hospital).

3. A District Energy System in Courtenay would greenhouse gas emissions by a total of 1,628 tonnes/year, equivalent to removing approximately 400 cars from the City's roads.

4. A District Energy System based on biomass would result in modest increases in conventional air pollutants such as particulates. Because the biomass boiler would be equipped with pollution controls however, the additional particulate emissions, over and above the emissions from existing natural gas boilers, would be equivalent to the annual output of a single EPA-approved wood stove or a single transit bus.

5. A District Energy System in Courtenay would directly result in local employment in the operation and maintenance of the system, and also in the area of recovering, processing, and delivering urban wood waste.

6. Biomass in the quantities required for a District Energy System is available in the Comox Valley.

7. A District Energy System in Courtenay would support a number of Provincial objectives, including reducing greenhouse gas emissions, a carbon-neutral public sector, production of green energy, and diversion of solid waste from landfills.
Recommendations

1. The City of Courtenay should communicate the price indicated by this study for district energy to the Vancouver Island Health Authority, North Island College, the CVRD on behalf of the Aquatic Centre, and SD71 Comox Valley on behalf of Queneesh Elementary School, and any other potential district energy clients in order to gauge their interest.

2. The City of Courtenay should consider applying for capital funding to help offset some of the capital costs of the District Energy System.

3. The City of Courtenay could approach the CVRD concerning their interest in diverting additional quantities of urban wood waste away from regional landfills, either directly or through a third party processor, to a District Energy System.

4. In developing a District Energy System in Courtenay, the City should work with local biomass suppliers to form long-term supply agreements.

5. In developing a District Energy System in Courtenay, the City should develop a thorough and well-planned public consultation process.

6. The City of Courtenay should consider its potential advantages as a district energy utility owner:
 a. Exemption from the BC Utilities Commission Act, which can simplify the process of implementing district energy;
 b. Access to capital at low interest rates through the Municipal Finance Authority;
 c. Access to senior government funding in the form of Federal and Provincial grants, and loans at lower interest rates than are available to private corporations;
 d. Management of the urban planning strategies that can encourage future development in the vicinity of the District Energy System;
 e. The ability to facilitate rights-of-way for district energy piping, as well as the permitting process that would be required for district energy infrastructure;
 f. The potential to co-locate municipal infrastructure in district energy trenches (e.g. replacement water piping or piping dedicated to reclaimed water);
 g. Existing administrative processes for utility billing that could be adapted to include energy billing;
 h. Experience with the process of obtaining permits from senior governments;
 i. Experience with public consultation processes;
 j. Access to sources of urban wood waste;
 k. Practical knowledge of utility operations and maintenance; and
 l. Credibility as a utility provider for water and wastewater services that could facilitate contracting arrangements with owners of client buildings.
Acknowledgements

The authors are grateful to Allan Gornall, Environmental Planner for the City of Courtenay for the support and advice he provided during this study. In addition, we would like to thank the following people for their time and assistance:

Andrew Thomas, Manager of Facilities Management, North Island College
Bruce Pollock, Manager of North Island Substations, BC Hydro
Cecil Rhodes, Corporate Director Facilities Operations, VIHA
Craig Armstrong, Project Engineer, City of Courtenay
Darcy Walters, Senior Manager of Recreation Facilities, Comox Valley Regional District
David Graham, Director, Facilities Management, North Island College
Dean Anderson, Director, Facilities Maintenance & Operations, VIHA - South Island
Deanna Fourt, Director Energy Efficiency and Conservation, VIHA
Derek Richmond, Manager of Engineering, City of Courtenay
Fred McGregor, Manager of Energy Conservation, SD71 Comox Valley
Gordon Monk, Technology Integration Manager, BC Hydro
Ian Buck, Manager of Planning, City of Courtenay
Kevin Lagan, Director of Operational Services, City of Courtenay
Kevin Lagan, Director of Operational Services, City of Courtenay
Mark Johnstone, Director, Facilities Maintenance & Operations, VIHA - Central/North Island
Michael Zbarsky, Manager of Transit and Sustainability, Comox Valley Regional District
Nancy Parra, Facilities Management, North Island College
Paul Bouman, Senior Key Account Manager, BC Hydro
Peter Crawford, Planning Director, City of Courtenay
Sandy Gray, CAO, City of Courtenay
Tillie Manthey, Director of Financial Services, City of Courtenay
Tom Moore, Principal, Moore Architecture
Closure
We trust that this report fulfills the current requirements of the City of Courtenay. If questions arise, please contact the undersigned at any time.

Original signed and sealed, on file

Stephen Salter, P.Eng., LEED AP Karl Marietta, MBA
President, Farallon Consultants Limited Senior Consultant, FVB Energy Inc.

David Trigg, P.Eng.
Mechanical Engineer, FVB Energy Inc.
Appendix I - Assumptions and Inputs

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Units</th>
<th>Source / Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy and Financial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$12.02 Price of natural gas to large commercial clients</td>
<td>$/GJ of gas</td>
<td>FortisBC Large Commercial Rate 3, 2012</td>
</tr>
<tr>
<td>$13.35 Price of natural gas to small commercial clients</td>
<td>$/GJ of gas</td>
<td>FortisBC Large Commercial Rate 1, 2012</td>
</tr>
<tr>
<td>$1.50 Carbon Tax, natural gas basis</td>
<td>$/GJ of gas</td>
<td></td>
</tr>
<tr>
<td>$1.25 Cost of carbon offsets to public organizations, gas basis</td>
<td>$/GJ of gas</td>
<td></td>
</tr>
<tr>
<td>$25.00 Price of greenhouse gas offsets bought by public organizations after 2012</td>
<td>$/tonne</td>
<td>Carbon Neutral Government Regulation</td>
</tr>
<tr>
<td>$65.00 Cost of electricity</td>
<td>$/MWh</td>
<td>Blended rate, 2012.</td>
</tr>
<tr>
<td>$45.00 Cost of purchased wood residues</td>
<td>$/BDT</td>
<td></td>
</tr>
<tr>
<td>$10.00 Cost of ash disposal</td>
<td>$/BDT</td>
<td></td>
</tr>
<tr>
<td>25 Amortization period</td>
<td>years</td>
<td></td>
</tr>
<tr>
<td>4.65% Interest rate</td>
<td></td>
<td>Municipal Finance Authority, 25 year term</td>
</tr>
<tr>
<td>2.1% General inflation rate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Units</th>
<th>Source / Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler efficiency, natural gas boilers</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>Boiler efficiency, biomass boilers</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>Moisture content of wood chips from wood waste</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Biomass heating value</td>
<td>12.0</td>
<td>GJ/tonne</td>
</tr>
<tr>
<td>Ash content of wood residues</td>
<td>3.0%</td>
<td></td>
</tr>
<tr>
<td>Emission factor, electricity</td>
<td>28</td>
<td>t CO$_2$e /GWh</td>
</tr>
<tr>
<td>Emission factor, natural gas</td>
<td>0.050287</td>
<td>t CO$_2$e /GJ</td>
</tr>
<tr>
<td>Emission factor, biomass combustion, 12% moisture</td>
<td>0.007250</td>
<td>t CO$_2$e/BDT</td>
</tr>
<tr>
<td>Emission factor, biomass combustion, 50% moisture</td>
<td>0.031790</td>
<td>t CO$_2$e/BDT</td>
</tr>
</tbody>
</table>

BC Hydro, BC Reporting Regulation Methodology Manual
Appendix II - Consulting Team

Stephen Salter, P.Eng. of Farallon Consultants Limited (www.farallon.ca) was the prime consultant and project manager for the study. Stephen developed sustainable energy options and screening-level analysis, modelled the energy and environmental performance of the sustainable energy system, evaluated sources of biomass, and surveyed potential district energy buildings.

Within FVB Energy Inc. (www.fvbenergy.com), Karl Marietta, MBA served as the Lead Contact and provided business case analysis. David Trigg, P.Eng., and Sean Casey, EIT performed modelling for District Energy System energy performance and cost.
Appendix III - References

Province of British Columbia. 2008. Bill 27-2008 Local Government (Green Communities) Statutes Amendment Act
Province of British Columbia. 2010. Carbon Neutral Government Regulation
Province of British Columbia. 2008. Landfill Gas Management Regulation
THE CORPORATION OF THE CITY OF COURtenAY

REPORT TO COUNCIL

FROM: Kevin Lagan, P.Eng
Director of Operational Services

FILE: 5225-04-Integrated Flood Management Study

DATE: March 18, 2013

SUBJECT: Integrated Flood Management Study (IFMS)

C.A.O. COMMENTS/RECOMMENDATIONS:

That the recommendation from the Director of Operational Services be received.

RECOMMENDATION:

That the report from the Director of Operational Services providing a status update for the Integrated Flood Management Study be received.

PURPOSE:

To provide Council with an update on the Integrated Flood Management Study.

BACKGROUND:

On November 15 and 16, 2009 and in January of 2010, Courtenay experienced two flood events in which the Courtenay River and Tsolum River exceeded their banks. The floods resulted in disruption to transportation and emergency response. Costs associated with the response to the two emergencies and subsequently repairing damages sustained to City property totalled $157,159.

On January 4th, 2011 Council carried a resolution to support the application for funding to B.C Emergency Management, through the B.C Flood Protection Program. This was to provide assistance with addressing flooding issues related to the Puntledge and Tsolum Rivers. The application for funding was approved in January 2012.

The proposed works included an update to the City’s Floodplain Mapping, development of a hydraulic model, preparation of an Integrated Flood Management Study and investigation of flood mitigation options inclusive of the proposed Tsolum River Floodwall. The proposed work assists the City in identifying short term flood mitigation requirements and developing long range plans for land-use and flood management.

McElhanney Consulting Services Ltd, in partnership with Kerr-Wood Leidal, have undertaken this work; completion of the mapping, modelling and IFMS is anticipated by April 2013.

DISCUSSION:

The Integrated Flood Management Study provides recommendations for the development of long term flood management strategies within the floodplain. The draft recommendations were developed through technical analysis and a comprehensive public consultation process. The draft recommendations are to be summarized in a presentation to Council by McElhanney Consulting Services on March 18, 2013.

The recommendations include but are not limited to:

- Protection of the majority of the floodplain in compatible uses that will accommodate
floods (managed retreat)

- Continue to pursue the construction of a floodwall or additional dike works. Investigative work has indicated that the Tsolum River Floodwall can not be constructed as originally proposed. MCCL and KKL are currently exploring additional options.
- Update Emergency Plans based on new information
- Update Flood Construction Levels

FINANCIAL IMPLICATIONS:

Work to date has been completed within the original study component of the 2012 Capital Budget of $707,163.00.

STRATEGIC PLAN REFERENCE:

Value Statement 2: “A progressive, diverse and Sustainable City”

Goal 1: Ensure infrastructure is sustainable

OCP SUSTAINABILITY REFERENCE:

Part 6 – Utility Services

6.4 Storm Drainage

Policy 3 – The City shall continue to use existing natural drainage patterns as the primary storm drainage system. Natural watercourses shall be protected from encroaching development and enhanced and improved where necessary. The City will continue to use storm water detention/retention as its principal means of meeting the objective of maintaining post development flows at predevelopment levels.

REGIONAL GROWTH STRATEGY REFERENCE:

Goal 8: Climate Change

Objective 8-F: Plan for climate change adaptation

8F-2: Promote inclusion of climate change modelling and impacts in future infrastructure and resource studies.

8F-6: All new developments within established floodplains should be discouraged and redevelopment of lands within floodplain areas should only be supported where technical analysis by a qualified professional has been undertaken to ensure that lands are safe for use, development will not impact floodplain functions, and construction levels include safety factors to account for climate change and potential sea level rise and associated extreme storm surges.

Respectfully submitted,

Kevin Lagan, P.Eng
Director of Operational Services
THE CORPORATION OF THE CITY OF COURtenay

REPORT TO COUNCIL

FROM: Director of Financial Services/Deputy CAO
FILE #: 1971-20 BIA
DATE: March 12, 2013

SUBJECT: Downtown Courtenay Business Improvement Association:
- 2013 Proposed Budget and Tax Levy

C.A.O.'S COMMENTS/RECOMMENDATIONS:

That the recommendation of the Director of Financial Services/Deputy CAO
be accepted.

RECOMMENDATION:

That Council approve the DCBIA 2013 proposed budget and requested tax levy in the amount of
$60,000.00.

PURPOSE:

To comply with the provisions of Bylaw No.2264, 2003 wherein Council must approve the
annual budget submitted by the DCBIA.

BACKGROUND:

Bylaw No. 2264 was established January 20, 2003 for the purposes of annually funding the
downtown business improvement area. The bylaw requires that the DCBIA submit, annually on
or before March 1st, a budget for the purpose of the business promotion scheme set out in
Schedule B of the bylaw.

DISCUSSION:

Bylaw No.2264 empowers Council to annually approve DCBIA funding to an amount not
exceeding the sum of Sixty Thousand Dollars ($60,000). Funding provided to the DCBIA
pursuant to this bylaw is recovered through the imposition of a special property tax levy applied
to the properties within the downtown Courtenay business improvement area.

For the DCBIA fiscal year 2013, proposed budget expenditures and requested tax levy are
$60,000. This will be the amount reflected under the category of “Collections for Other
Authorities” in the 2013-2017 Financial Plan, and is the amount on which the 2013 DCBIA tax
rate will be calculated.

Respectfully submitted,

Tillie Manthey, BA, CGA
Director of Financial Services/Deputy CAO
G:\FINANCE\Tillie\REPORTS\COUNCIL\BIA_Budget 2013.docx

Attach: DCBIA Letter of Request
City of Courtenay
Corporate Services Department
Finance Division
Ms. Tillie Manthey
830 Cliffe Avenue
Courtenay, BC V9N 2J7

Dear Ms. Manthey:

RE: Downtown Courtenay Business Improvement Association (DCBIA) 2013 Budget

Please find below the proposed budget for the DCBIA for 2013, approved by the Board of Directors.

Proposed DCBIA 2013 Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting & Legal</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Insurance</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Office Expense</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>Executive Director Contract</td>
<td>$21,000.00</td>
</tr>
<tr>
<td>General Administration and Expense</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>Infrastructure and Streetscape</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>Marketing and Special Events</td>
<td>$16,000.00</td>
</tr>
<tr>
<td>Total Budget for 2013 and</td>
<td>$60,000.00</td>
</tr>
</tbody>
</table>

Please feel free to contact me if you should have any questions, 250-334-4722

Yours truly,

Mark Middleton
DCBIA President
THE CORPORATION OF THE CITY OF COURtenay

BYLAW NO. 2747

A bylaw to amend City of Courtenay Fees and Charges Bylaw No. 1673, 1992

The Council of the Corporation of the City of Courtenay in open meeting assembled enacts as follows:

1. This bylaw may be cited for all purposes as “Fees and Charges Amendment Bylaw No. 2747, 2013”.

2. That “City of Courtenay Fees and Charges Bylaw No. 1673, 1992” be amended by inserting item (f) as follows into Schedule of Fees and Charges, Section II, Appendix I, “Development Permit Applications:

 (f) “For the exterior renovation of existing commercial properties within the Downtown Courtenay Business Improvement Area.........$100 (no GST)”

3. This bylaw shall come into effect upon final adoption hereof.

Read a first time this 18th day of March, 2013

Read a second time this 18th day of March, 2013

Read a third time this 18th day of March, 2013

Finally passed and adopted this day

Mayor

Director of Legislative Services